Glucocorticoid augments lipopolysaccharide-induced activation of the IκBζ-dependent genes encoding the anti-microbial glycoproteins lipocalin 2 and pentraxin 3

Soh Yamazaki, Shizuo Akira, Hideki Sumimoto

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Bacterial lipopolysaccharide (LPS), one of the most potent inducers of inflammation, activates the transcription factor NF-κB to induce expression of both proinflammatory mediators and anti-microbial glycoproteins such as lipocalin 2 (Lcn2) and pentraxin 3 (PTX3) in macrophages. Glucocorticoids are known to inhibit LPS-induced expression of proinflammatory cytokines via glucocorticoid receptor (GR)-mediated transrepression of NF-κB, whereas their effect on induction of anti-microbial effectors has remained to be elucidated. Here we show that the synthetic glucocorticoid dexamethasone (Dex) strongly enhances LPS-induced transcription of Lcn2 and Ptx3, although Dex by itself fails to trigger their transcription. In macrophages deficient in IκBζ (an inducible coactivator of NF-κB), Lcn2 and Ptx3 are not activated by LPS either alone or in combination with Dex. Association of GR as well as Brg1 (a subunit of the chromatin remodelling Swi/Snf complex) with a functional glucocorticoid response element in Lcn2 requires both the costimulation with LPS and the presence of IκBζ. Although Ptx3 does not contain the element, LPS induces recruitment of Dex-liganded GR to NF-κB-binding sites in regulatory regions of Ptx3, an event that does not occur in IκBζ-deficient macrophages. Thus glucocorticoids likely regulate infection-induced inflammation by increasing anti-microbial effectors in an IκBζ-dependent manner, while repressing proinflammatory genes.

Original languageEnglish
Pages (from-to)399-410
Number of pages12
JournalJournal of biochemistry
Volume157
Issue number5
DOIs
Publication statusPublished - May 1 2015

Fingerprint

Lipocalins
Gene encoding
Glucocorticoids
Lipopolysaccharides
Glycoproteins
Chemical activation
Dexamethasone
Macrophages
Glucocorticoid Receptors
Genes
Transcription
Inflammation
Chromatin Assembly and Disassembly
Nucleic Acid Regulatory Sequences
Response Elements
Chromatin
PTX3 protein
Lipocalin-2
Transcription Factors
Binding Sites

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology

Cite this

@article{ad52da0169014efc8d055e5ac3038882,
title = "Glucocorticoid augments lipopolysaccharide-induced activation of the IκBζ-dependent genes encoding the anti-microbial glycoproteins lipocalin 2 and pentraxin 3",
abstract = "Bacterial lipopolysaccharide (LPS), one of the most potent inducers of inflammation, activates the transcription factor NF-κB to induce expression of both proinflammatory mediators and anti-microbial glycoproteins such as lipocalin 2 (Lcn2) and pentraxin 3 (PTX3) in macrophages. Glucocorticoids are known to inhibit LPS-induced expression of proinflammatory cytokines via glucocorticoid receptor (GR)-mediated transrepression of NF-κB, whereas their effect on induction of anti-microbial effectors has remained to be elucidated. Here we show that the synthetic glucocorticoid dexamethasone (Dex) strongly enhances LPS-induced transcription of Lcn2 and Ptx3, although Dex by itself fails to trigger their transcription. In macrophages deficient in IκBζ (an inducible coactivator of NF-κB), Lcn2 and Ptx3 are not activated by LPS either alone or in combination with Dex. Association of GR as well as Brg1 (a subunit of the chromatin remodelling Swi/Snf complex) with a functional glucocorticoid response element in Lcn2 requires both the costimulation with LPS and the presence of IκBζ. Although Ptx3 does not contain the element, LPS induces recruitment of Dex-liganded GR to NF-κB-binding sites in regulatory regions of Ptx3, an event that does not occur in IκBζ-deficient macrophages. Thus glucocorticoids likely regulate infection-induced inflammation by increasing anti-microbial effectors in an IκBζ-dependent manner, while repressing proinflammatory genes.",
author = "Soh Yamazaki and Shizuo Akira and Hideki Sumimoto",
year = "2015",
month = "5",
day = "1",
doi = "10.1093/jb/mvu086",
language = "English",
volume = "157",
pages = "399--410",
journal = "Journal of Biochemistry",
issn = "0021-924X",
publisher = "Oxford University Press",
number = "5",

}

TY - JOUR

T1 - Glucocorticoid augments lipopolysaccharide-induced activation of the IκBζ-dependent genes encoding the anti-microbial glycoproteins lipocalin 2 and pentraxin 3

AU - Yamazaki, Soh

AU - Akira, Shizuo

AU - Sumimoto, Hideki

PY - 2015/5/1

Y1 - 2015/5/1

N2 - Bacterial lipopolysaccharide (LPS), one of the most potent inducers of inflammation, activates the transcription factor NF-κB to induce expression of both proinflammatory mediators and anti-microbial glycoproteins such as lipocalin 2 (Lcn2) and pentraxin 3 (PTX3) in macrophages. Glucocorticoids are known to inhibit LPS-induced expression of proinflammatory cytokines via glucocorticoid receptor (GR)-mediated transrepression of NF-κB, whereas their effect on induction of anti-microbial effectors has remained to be elucidated. Here we show that the synthetic glucocorticoid dexamethasone (Dex) strongly enhances LPS-induced transcription of Lcn2 and Ptx3, although Dex by itself fails to trigger their transcription. In macrophages deficient in IκBζ (an inducible coactivator of NF-κB), Lcn2 and Ptx3 are not activated by LPS either alone or in combination with Dex. Association of GR as well as Brg1 (a subunit of the chromatin remodelling Swi/Snf complex) with a functional glucocorticoid response element in Lcn2 requires both the costimulation with LPS and the presence of IκBζ. Although Ptx3 does not contain the element, LPS induces recruitment of Dex-liganded GR to NF-κB-binding sites in regulatory regions of Ptx3, an event that does not occur in IκBζ-deficient macrophages. Thus glucocorticoids likely regulate infection-induced inflammation by increasing anti-microbial effectors in an IκBζ-dependent manner, while repressing proinflammatory genes.

AB - Bacterial lipopolysaccharide (LPS), one of the most potent inducers of inflammation, activates the transcription factor NF-κB to induce expression of both proinflammatory mediators and anti-microbial glycoproteins such as lipocalin 2 (Lcn2) and pentraxin 3 (PTX3) in macrophages. Glucocorticoids are known to inhibit LPS-induced expression of proinflammatory cytokines via glucocorticoid receptor (GR)-mediated transrepression of NF-κB, whereas their effect on induction of anti-microbial effectors has remained to be elucidated. Here we show that the synthetic glucocorticoid dexamethasone (Dex) strongly enhances LPS-induced transcription of Lcn2 and Ptx3, although Dex by itself fails to trigger their transcription. In macrophages deficient in IκBζ (an inducible coactivator of NF-κB), Lcn2 and Ptx3 are not activated by LPS either alone or in combination with Dex. Association of GR as well as Brg1 (a subunit of the chromatin remodelling Swi/Snf complex) with a functional glucocorticoid response element in Lcn2 requires both the costimulation with LPS and the presence of IκBζ. Although Ptx3 does not contain the element, LPS induces recruitment of Dex-liganded GR to NF-κB-binding sites in regulatory regions of Ptx3, an event that does not occur in IκBζ-deficient macrophages. Thus glucocorticoids likely regulate infection-induced inflammation by increasing anti-microbial effectors in an IκBζ-dependent manner, while repressing proinflammatory genes.

UR - http://www.scopus.com/inward/record.url?scp=84944737090&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84944737090&partnerID=8YFLogxK

U2 - 10.1093/jb/mvu086

DO - 10.1093/jb/mvu086

M3 - Article

C2 - 25552549

AN - SCOPUS:84944737090

VL - 157

SP - 399

EP - 410

JO - Journal of Biochemistry

JF - Journal of Biochemistry

SN - 0021-924X

IS - 5

ER -