Abstract
Monolayer graphene exhibits impressive in-plane thermal conductivity (> 1000 W m–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.
Original language | English |
---|---|
Pages (from-to) | 385-391 |
Number of pages | 7 |
Journal | Nano Energy |
Volume | 38 |
DOIs | |
Publication status | Published - Aug 2017 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)
- Electrical and Electronic Engineering