Grassmann manifold of a JH-algebra

Takaaki Nomura

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We study the set[Figure not available: see fulltext.] of rank p idempotents in a topologically simple Hilbert Jordan algebra (JH-algebra for short). To produce the differential geometric structure on[Figure not available: see fulltext.], we establish Jordan algebraic results concerning the structure of some two-generator subalgebras. We identify geodesics, the Riemannian distance and the sectional curvature of[Figure not available: see fulltext.] by using the Jordan algebraic structure.

Original languageEnglish
Pages (from-to)237-260
Number of pages24
JournalAnnals of Global Analysis and Geometry
Volume12
Issue number1
DOIs
Publication statusPublished - Feb 1 1994

Fingerprint

Grassmann Manifold
Jordan
Figure
Algebra
Hilbert Algebra
P-rank
Jordan Algebra
Sectional Curvature
Geometric Structure
Algebraic Structure
Idempotent
Geodesic
Subalgebra
Generator

All Science Journal Classification (ASJC) codes

  • Analysis
  • Political Science and International Relations
  • Geometry and Topology

Cite this

Grassmann manifold of a JH-algebra. / Nomura, Takaaki.

In: Annals of Global Analysis and Geometry, Vol. 12, No. 1, 01.02.1994, p. 237-260.

Research output: Contribution to journalArticle

Nomura, Takaaki. / Grassmann manifold of a JH-algebra. In: Annals of Global Analysis and Geometry. 1994 ; Vol. 12, No. 1. pp. 237-260.
@article{bb241dfc1ade452f83566e09963cdc85,
title = "Grassmann manifold of a JH-algebra",
abstract = "We study the set[Figure not available: see fulltext.] of rank p idempotents in a topologically simple Hilbert Jordan algebra (JH-algebra for short). To produce the differential geometric structure on[Figure not available: see fulltext.], we establish Jordan algebraic results concerning the structure of some two-generator subalgebras. We identify geodesics, the Riemannian distance and the sectional curvature of[Figure not available: see fulltext.] by using the Jordan algebraic structure.",
author = "Takaaki Nomura",
year = "1994",
month = "2",
day = "1",
doi = "10.1007/BF02108300",
language = "English",
volume = "12",
pages = "237--260",
journal = "Annals of Global Analysis and Geometry",
issn = "0232-704X",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Grassmann manifold of a JH-algebra

AU - Nomura, Takaaki

PY - 1994/2/1

Y1 - 1994/2/1

N2 - We study the set[Figure not available: see fulltext.] of rank p idempotents in a topologically simple Hilbert Jordan algebra (JH-algebra for short). To produce the differential geometric structure on[Figure not available: see fulltext.], we establish Jordan algebraic results concerning the structure of some two-generator subalgebras. We identify geodesics, the Riemannian distance and the sectional curvature of[Figure not available: see fulltext.] by using the Jordan algebraic structure.

AB - We study the set[Figure not available: see fulltext.] of rank p idempotents in a topologically simple Hilbert Jordan algebra (JH-algebra for short). To produce the differential geometric structure on[Figure not available: see fulltext.], we establish Jordan algebraic results concerning the structure of some two-generator subalgebras. We identify geodesics, the Riemannian distance and the sectional curvature of[Figure not available: see fulltext.] by using the Jordan algebraic structure.

UR - http://www.scopus.com/inward/record.url?scp=0041060821&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0041060821&partnerID=8YFLogxK

U2 - 10.1007/BF02108300

DO - 10.1007/BF02108300

M3 - Article

AN - SCOPUS:0041060821

VL - 12

SP - 237

EP - 260

JO - Annals of Global Analysis and Geometry

JF - Annals of Global Analysis and Geometry

SN - 0232-704X

IS - 1

ER -