Ground-state properties of neutron-rich Mg isotopes

S. Watanabe, K. Minomo, M. Shimada, S. Tagami, M. Kimura, M. Takechi, M. Fukuda, D. Nishimura, T. Suzuki, T. Matsumoto, Y. R. Shimizu, M. Yahiro

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

We analyze recently measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics (AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N=19 to a drip-line nucleus 40Mg with N=28, indicating that both the N=20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.

Original languageEnglish
Article number044610
JournalPhysical Review C - Nuclear Physics
Volume89
Issue number4
DOIs
Publication statusPublished - Apr 23 2014

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Ground-state properties of neutron-rich Mg isotopes'. Together they form a unique fingerprint.

Cite this