Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy

Shigeo Yoshida, Ikuro Sumita, Mineo Kumazawa

Research output: Contribution to journalArticle

161 Citations (Scopus)

Abstract

We present a growth tectonic model of Earth's inner core and the resulting model of the seismic anisotropy. The inner core grows anisotropically if the convection in the outer core is of Taylor column type. The anisotropic growth produces a flow field of the poloidal zonal order 2 type as a result of the isostatic adjustment of the viscous inner core. Crystals in the inner core align themselves under the stress field produced by the flow. We model the anisotropic structure of the inner core, using the theory of Kamb [1959] and elastic constants of Stixrude and Cohen [1995b]. We consider models for both hcp iron and fcc iron, which are the probable crystal structures for the inner core iron according to Stixrude and Cohen [1995a]. We have found that the c axis for hcp iron and [111] direction for fcc iron align in the polar direction. The alignment is consistent with seismic observations, which have revealed that the P wave velocity is faster in the polar direction. Our model predicts that the degree of the alignment decreases near the inner core boundary in accord with recent body wave observations. The radial dependence of the alignment would result from the following three effects: (1) crystals near the surface have not undergone stressed state long enough to acquire anisotropy after precipitation, (2) stress near the surface is different from that in the interior of the inner core due to shear stress free boundary condition, and (3) partially molten structure results in transversely isotropic stress condition near the inner core surface due to compaction. Thus the application of Kamb's theory successfully explains the seismic anisotropy in the inner core provided that the crystals have been subjected under the same stress condition for the timescale of the order of 109 years.

Original languageEnglish
Pages (from-to)28085-28103
Number of pages19
JournalJournal of Geophysical Research B: Solid Earth
Volume101
Issue number12
Publication statusPublished - Dec 10 1996
Externally publishedYes

Fingerprint

outer core
elastic anisotropy
inner core
growth models
Anisotropy
anisotropy
Iron
iron
crystals
Crystals
seismic anisotropy
tectonics
Elastic constants
Tectonics
crystal
crystal structure
alignment
shear stress
Molten materials
Shear stress

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Condensed Matter Physics
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Materials Chemistry
  • Palaeontology

Cite this

Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. / Yoshida, Shigeo; Sumita, Ikuro; Kumazawa, Mineo.

In: Journal of Geophysical Research B: Solid Earth, Vol. 101, No. 12, 10.12.1996, p. 28085-28103.

Research output: Contribution to journalArticle

@article{511bb3015d6e43a3b454f5ce8da2d6ba,
title = "Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy",
abstract = "We present a growth tectonic model of Earth's inner core and the resulting model of the seismic anisotropy. The inner core grows anisotropically if the convection in the outer core is of Taylor column type. The anisotropic growth produces a flow field of the poloidal zonal order 2 type as a result of the isostatic adjustment of the viscous inner core. Crystals in the inner core align themselves under the stress field produced by the flow. We model the anisotropic structure of the inner core, using the theory of Kamb [1959] and elastic constants of Stixrude and Cohen [1995b]. We consider models for both hcp iron and fcc iron, which are the probable crystal structures for the inner core iron according to Stixrude and Cohen [1995a]. We have found that the c axis for hcp iron and [111] direction for fcc iron align in the polar direction. The alignment is consistent with seismic observations, which have revealed that the P wave velocity is faster in the polar direction. Our model predicts that the degree of the alignment decreases near the inner core boundary in accord with recent body wave observations. The radial dependence of the alignment would result from the following three effects: (1) crystals near the surface have not undergone stressed state long enough to acquire anisotropy after precipitation, (2) stress near the surface is different from that in the interior of the inner core due to shear stress free boundary condition, and (3) partially molten structure results in transversely isotropic stress condition near the inner core surface due to compaction. Thus the application of Kamb's theory successfully explains the seismic anisotropy in the inner core provided that the crystals have been subjected under the same stress condition for the timescale of the order of 109 years.",
author = "Shigeo Yoshida and Ikuro Sumita and Mineo Kumazawa",
year = "1996",
month = "12",
day = "10",
language = "English",
volume = "101",
pages = "28085--28103",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "12",

}

TY - JOUR

T1 - Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy

AU - Yoshida, Shigeo

AU - Sumita, Ikuro

AU - Kumazawa, Mineo

PY - 1996/12/10

Y1 - 1996/12/10

N2 - We present a growth tectonic model of Earth's inner core and the resulting model of the seismic anisotropy. The inner core grows anisotropically if the convection in the outer core is of Taylor column type. The anisotropic growth produces a flow field of the poloidal zonal order 2 type as a result of the isostatic adjustment of the viscous inner core. Crystals in the inner core align themselves under the stress field produced by the flow. We model the anisotropic structure of the inner core, using the theory of Kamb [1959] and elastic constants of Stixrude and Cohen [1995b]. We consider models for both hcp iron and fcc iron, which are the probable crystal structures for the inner core iron according to Stixrude and Cohen [1995a]. We have found that the c axis for hcp iron and [111] direction for fcc iron align in the polar direction. The alignment is consistent with seismic observations, which have revealed that the P wave velocity is faster in the polar direction. Our model predicts that the degree of the alignment decreases near the inner core boundary in accord with recent body wave observations. The radial dependence of the alignment would result from the following three effects: (1) crystals near the surface have not undergone stressed state long enough to acquire anisotropy after precipitation, (2) stress near the surface is different from that in the interior of the inner core due to shear stress free boundary condition, and (3) partially molten structure results in transversely isotropic stress condition near the inner core surface due to compaction. Thus the application of Kamb's theory successfully explains the seismic anisotropy in the inner core provided that the crystals have been subjected under the same stress condition for the timescale of the order of 109 years.

AB - We present a growth tectonic model of Earth's inner core and the resulting model of the seismic anisotropy. The inner core grows anisotropically if the convection in the outer core is of Taylor column type. The anisotropic growth produces a flow field of the poloidal zonal order 2 type as a result of the isostatic adjustment of the viscous inner core. Crystals in the inner core align themselves under the stress field produced by the flow. We model the anisotropic structure of the inner core, using the theory of Kamb [1959] and elastic constants of Stixrude and Cohen [1995b]. We consider models for both hcp iron and fcc iron, which are the probable crystal structures for the inner core iron according to Stixrude and Cohen [1995a]. We have found that the c axis for hcp iron and [111] direction for fcc iron align in the polar direction. The alignment is consistent with seismic observations, which have revealed that the P wave velocity is faster in the polar direction. Our model predicts that the degree of the alignment decreases near the inner core boundary in accord with recent body wave observations. The radial dependence of the alignment would result from the following three effects: (1) crystals near the surface have not undergone stressed state long enough to acquire anisotropy after precipitation, (2) stress near the surface is different from that in the interior of the inner core due to shear stress free boundary condition, and (3) partially molten structure results in transversely isotropic stress condition near the inner core surface due to compaction. Thus the application of Kamb's theory successfully explains the seismic anisotropy in the inner core provided that the crystals have been subjected under the same stress condition for the timescale of the order of 109 years.

UR - http://www.scopus.com/inward/record.url?scp=0030436971&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030436971&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0030436971

VL - 101

SP - 28085

EP - 28103

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - 12

ER -