Habitat complexity in aquatic systems: Fractals and beyond

Research output: Contribution to journalReview articlepeer-review

107 Citations (Scopus)

Abstract

Despite the intensity with which ecological information involving habitat complexity has been amassed to date, much remains to be revealed for a comprehensive understanding of the mechanics and implications of the structural complexity of habitats and its influences on ecological communities. This review examines the multi-faceted characteristics of habitat complexity, focusing in particular on aquatic ecosystems. Habitat complexity in aquatic systems is characterised by at least five different traits of physical structure: (1) spatial scales, (2) diversity of complexity-generating physical (structural) elements, (3) spatial arrangement of elements, (4) sizes of elements, (5) abundance/density of elements. Of these five traits, the concept of fractal dimension fully encompasses only the last one; in this sense, habitat complexity is more complex than what fractal measures represent. It is therefore important to investigate exactly which traits of habitat structure are exerting influences on organisms/communities. We hypothesise that, where an entire range of possible fractal dimension D is considered, intermediate levels of D are most likely to be associated with the highest level of biodiversity, to which the body size spectra of assemblages would have a close bearing. In most aquatic ecosystems, broadly two-dimensional structures of bottom substrate at the scale of 1-10 m mean that the addition of vertical, three dimensional structures almost always implies an increase in both the 'diversity' and 'abundance' components of structural elements, resulting in more habitats being made available to organisms of different sizes and functional designs. The conservation and management of aquatic ecosystems would be facilitated by rigorous assessments of linkages between habitat complexity and aquatic communities, for which an integrative approach to habitat complexity seems to offer a useful and versatile framework.

Original languageEnglish
Pages (from-to)27-47
Number of pages21
JournalHydrobiologia
Volume685
Issue number1
DOIs
Publication statusPublished - Apr 2012

All Science Journal Classification (ASJC) codes

  • Aquatic Science

Fingerprint Dive into the research topics of 'Habitat complexity in aquatic systems: Fractals and beyond'. Together they form a unique fingerprint.

Cite this