Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, methylRO

Jun Ueda, Kazumitsu Maehara, Daisuke Mashiko, Takako Ichinose, Tatsuma Yao, Mayuko Hori, Yuko Sato, Hiroshi Kimura, Yasuyuki Ohkawa, Kazuo Yamagata

    Research output: Contribution to journalArticlepeer-review

    38 Citations (Scopus)

    Abstract

    In mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states.

    Original languageEnglish
    Pages (from-to)910-924
    Number of pages15
    JournalStem Cell Reports
    Volume2
    Issue number6
    DOIs
    Publication statusPublished - Jun 3 2014

    All Science Journal Classification (ASJC) codes

    • Biochemistry
    • Genetics
    • Developmental Biology
    • Cell Biology

    Fingerprint

    Dive into the research topics of 'Heterochromatin dynamics during the differentiation process revealed by the DNA methylation reporter mouse, methylRO'. Together they form a unique fingerprint.

    Cite this