TY - JOUR
T1 - Heterodimeric protein complex identification by naïve Bayes classifiers
AU - Maruyama, Osamu
N1 - Funding Information:
The article processing charge was funded by the Institute of Mathematics for Industry at Kyushu University. There is no other financial or non-financial competing interests.
Funding Information:
The authors would like to thank anonymous reviewers for their valuable comments and suggestions, which were helpful in improving the paper. This work was supported by a grant from the Kyushu University Global Centers of Excellence Program, “Center for Math-for-Industry,” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. A preliminary version of this work was presented at the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB’11, Chicago, Illinois, August 2011.
PY - 2013/12/3
Y1 - 2013/12/3
N2 - Background: Protein complexes are basic cellular entities that carry out the functions of their components. It can be found that in databases of protein complexes of yeast like CYC2008, the major type of known protein complexes is heterodimeric complexes. Although a number of methods for trying to predict sets of proteins that form arbitrary types of protein complexes simultaneously have been proposed, it can be found that they often fail to predict heterodimeric complexes.Results: In this paper, we have designed several features characterizing heterodimeric protein complexes based on genomic data sets, and proposed a supervised-learning method for the prediction of heterodimeric protein complexes. This method learns the parameters of the features, which are embedded in the naïve Bayes classifier. The log-likelihood ratio derived from the naïve Bayes classifier with the parameter values obtained by maximum likelihood estimation gives the score of a given pair of proteins to predict whether the pair is a heterodimeric complex or not. A five-fold cross-validation shows good performance on yeast. The trained classifiers also show higher predictability than various existing algorithms on yeast data sets with approximate and exact matching criteria.Conclusions: Heterodimeric protein complex prediction is a rather harder problem than heteromeric protein complex prediction because heterodimeric protein complex is topologically simpler. However, it turns out that by designing features specialized for heterodimeric protein complexes, predictability of them can be improved. Thus, the design of more sophisticate features for heterodimeric protein complexes as well as the accumulation of more accurate and useful genome-wide data sets will lead to higher predictability of heterodimeric protein complexes. Our tool can be downloaded from http://imi.kyushu-u.ac.jp/~om/.
AB - Background: Protein complexes are basic cellular entities that carry out the functions of their components. It can be found that in databases of protein complexes of yeast like CYC2008, the major type of known protein complexes is heterodimeric complexes. Although a number of methods for trying to predict sets of proteins that form arbitrary types of protein complexes simultaneously have been proposed, it can be found that they often fail to predict heterodimeric complexes.Results: In this paper, we have designed several features characterizing heterodimeric protein complexes based on genomic data sets, and proposed a supervised-learning method for the prediction of heterodimeric protein complexes. This method learns the parameters of the features, which are embedded in the naïve Bayes classifier. The log-likelihood ratio derived from the naïve Bayes classifier with the parameter values obtained by maximum likelihood estimation gives the score of a given pair of proteins to predict whether the pair is a heterodimeric complex or not. A five-fold cross-validation shows good performance on yeast. The trained classifiers also show higher predictability than various existing algorithms on yeast data sets with approximate and exact matching criteria.Conclusions: Heterodimeric protein complex prediction is a rather harder problem than heteromeric protein complex prediction because heterodimeric protein complex is topologically simpler. However, it turns out that by designing features specialized for heterodimeric protein complexes, predictability of them can be improved. Thus, the design of more sophisticate features for heterodimeric protein complexes as well as the accumulation of more accurate and useful genome-wide data sets will lead to higher predictability of heterodimeric protein complexes. Our tool can be downloaded from http://imi.kyushu-u.ac.jp/~om/.
UR - http://www.scopus.com/inward/record.url?scp=84888768089&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888768089&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-14-347
DO - 10.1186/1471-2105-14-347
M3 - Article
C2 - 24299017
AN - SCOPUS:84888768089
SN - 1471-2105
VL - 14
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
M1 - 347
ER -