Heterogeneous distribution of the precursor of type I and type III collagen and fibronectin in the rough endoplasmic reticulum of palatal mesenchymal cells of the mouse embryo cultured in ascorbate-depleted medium

Kojiro Kurisu, Yasuyoshi Ohsaki, Kengo Nagata, Tetsuichiro Inai, Toshio Kukita

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

In order to examine the intracellular distribution of precursors of type I and type III collagen and fibronectin in the palatal mesenchymal (MEPM) cells of the mouse embryo cultured under ascorbate-deficient conditions, immuno-electron-microscopic studies were carried out by use of affinity purified antibodies for these proteins. MEPM cells were obtained from the palatal shelves of 14-day-old mouse fetuses and cultured for 3-7 days in medium, either with or without 50 ng/dish/day ascorbic acid. Results obtained were as follows: (1) Although the rough endoplasmic reticulum (rER) of MEPM cells cultured for 5 days in ascorbate-supplemented medium was flattened, that in cells cultured in ascorbate-deficient medium had a distended or vesicular appearance. (2) Vesicular or distended rER showed heterogeneous staining for both type I and type III collagen, namely, some parts of rER showed positive staining for both types of collagen, while others showed negative staining. (3) Both type I and type III collagen showed codistribution in the same vesicular rER. (4) Vesicular rER showed negative or very faint labelling for fibronectin. These results may suggest regional differences in the function of rER.

Original languageEnglish
Pages (from-to)429-435
Number of pages7
JournalCell & Tissue Research
Volume267
Issue number3
DOIs
Publication statusPublished - Mar 1992

All Science Journal Classification (ASJC) codes

  • Pathology and Forensic Medicine
  • Histology
  • Cell Biology

Fingerprint Dive into the research topics of 'Heterogeneous distribution of the precursor of type I and type III collagen and fibronectin in the rough endoplasmic reticulum of palatal mesenchymal cells of the mouse embryo cultured in ascorbate-depleted medium'. Together they form a unique fingerprint.

Cite this