Abstract
We demonstrated experimentally a direct way to probe a hidden propensity to the formation of a spin-density wave in a nonmagnetic metal with strong Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an incommensurate magnetic order below 20 K in heavily overdoped La 2-xSrxCuO4. Elastic neutron scattering suggested that this order cannot be ascribed to the localized spins on Cu or doped Fe. Angle-resolved photoemission revealed a strong Fermi surface nesting inherent in the pristine La2-xSrxCuO4 that likely drives this order. Our finding presents the first example of the long-sought "itinerant-spin extreme" of cuprates, where the spins of itinerant doped holes define the magnetic ordering ground state; it complements the current picture of cuprate spin physics that highlights the predominant role of localized spins at lower dopings.
Original language | English |
---|---|
Article number | 127002 |
Journal | Physical review letters |
Volume | 107 |
Issue number | 12 |
DOIs | |
Publication status | Published - Sept 14 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)