Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors

Mingjun Dai, Liupeng Zhao, Hongyu Gao, Peng Sun, Fengmin Liu, Sean Zhang, Kengo Shimanoe, Noboru Yamazoe, Geyu Lu

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

This paper presents a facile hydrolysis reaction and annealing for preparing a novel hierarchical nanoheterostructure via assembly of α-Fe2O3 nanorods onto multiwall carbon nanotubes (MWCNTs) backbones. The as-synthesized nanocomposites were characterized using XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), TEM (Transmission electron microscopy), XPS (X-ray photoelectron spectroscopy) and BET (Surface Area and Porosity System). The observations showed uniform α-Fe2O3 nanorods approximately 100-200 nm in length and 50-100 nm in diameter that were hierarchically assembled onto the surface of the MWCNTs. The formation of the heterostructure was investigated by observing the evolution of the microstructure of the products at different reaction times. The X-ray photoelectron spectra (XPS) showed that the ability of the absorbing oxygen was enhanced by the formation of the heterostructure composites. Moreover, as a proof-of-concept presentation, the novel CNTs@α-Fe2O3 hierarchical heterostructure acted as a gas sensitive material. Significantly, the composites exhibited excellent sensing properties for acetone with high sensitivity, exceptional selectivity and good reproducibility. The response of the CNTs@α-Fe2O3 sensor to 100 ppm acetones at 225 °C was nearly 35, which was superior to the single α-Fe2O3 nanorods with a response of 16, and the detection limit of the sensor was 500 ppb. The enhanced properties were mainly attributed to the unique structure and p-n heterojunction between the CNTs and the α-Fe2O3 nanorods.

Original languageEnglish
Pages (from-to)8919-8928
Number of pages10
JournalACS Applied Materials and Interfaces
Volume9
Issue number10
DOIs
Publication statusPublished - Mar 15 2017

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Hierarchical Assembly of α-Fe<sub>2</sub>O<sub>3</sub> Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors'. Together they form a unique fingerprint.

  • Cite this