High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC

Sakae Takenaka, Hiroshi Matsumori, Hideki Matsune, Eishi Tanabe, Masahiro Kishida

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

Multiwalled carbon nanotube (CNT)-supported Pt nanoparticles (Pt/CNT) were covered with silica layers by successive hydrolysis of 3-aminopropyl- triethoxysilane and tetraethoxysilane on CNTs with Pt metal precursors, followed by reduction with hydrogen. The Pt/CNT covered with silica layers (SiO 2/Pt/CNT) was used as a cathode catalyst for a proton exchange membrane fuel cell (PEMFC). The activity of SiO2/Pt/CNT catalyst for the oxygen reduction reaction in a single-cell PEMFC was similar to that of Pt/CNT, in spite of the uniform coverage of Pt with silica layers, indicating that the coverage of Pt/CNT with silica layers did not appreciably decrease the catalytic activity. In addition, SiO2/Pt/CNT electrocatalyst showed high stability during potential cycling from 0.05 to 1.20 V vs reversible hydrogen electrode in an aqueous H2SO4 electrolyte, whereas Pt/CNT significantly deactivated during the experiment. The structural change of Pt species in these electrocatalysts during potential cycling was investigated by transmission electron microscopy images and Pt L III-edge X-ray absorption fine structure. The crystallite size of Pt metal in SiO2/Pt/CNT did not change appreciably during the potential cycling, while Pt metal crystallites in Pt/CNT seriously aggregated. Silica layers enveloping Pt metal particles in SiO2/Pt/CNT prevent the dissolution and redeposition of Pt metal particles as well as the agglomeration of Pt metal particles on the supports.

Original languageEnglish
JournalJournal of the Electrochemical Society
Volume155
Issue number9
DOIs
Publication statusPublished - Aug 15 2008

Fingerprint

Carbon Nanotubes
electrocatalysts
Electrocatalysts
Proton exchange membrane fuel cells (PEMFC)
durability
Silicon Dioxide
fuel cells
Carbon nanotubes
Durability
Cathodes
cathodes
carbon nanotubes
Silica
silicon dioxide
membranes
protons
Metals
metal particles
Hydrogen
cycles

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Cite this

High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC. / Takenaka, Sakae; Matsumori, Hiroshi; Matsune, Hideki; Tanabe, Eishi; Kishida, Masahiro.

In: Journal of the Electrochemical Society, Vol. 155, No. 9, 15.08.2008.

Research output: Contribution to journalArticle

@article{1e6d00ffe6f442ada54812c3aba7c585,
title = "High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC",
abstract = "Multiwalled carbon nanotube (CNT)-supported Pt nanoparticles (Pt/CNT) were covered with silica layers by successive hydrolysis of 3-aminopropyl- triethoxysilane and tetraethoxysilane on CNTs with Pt metal precursors, followed by reduction with hydrogen. The Pt/CNT covered with silica layers (SiO 2/Pt/CNT) was used as a cathode catalyst for a proton exchange membrane fuel cell (PEMFC). The activity of SiO2/Pt/CNT catalyst for the oxygen reduction reaction in a single-cell PEMFC was similar to that of Pt/CNT, in spite of the uniform coverage of Pt with silica layers, indicating that the coverage of Pt/CNT with silica layers did not appreciably decrease the catalytic activity. In addition, SiO2/Pt/CNT electrocatalyst showed high stability during potential cycling from 0.05 to 1.20 V vs reversible hydrogen electrode in an aqueous H2SO4 electrolyte, whereas Pt/CNT significantly deactivated during the experiment. The structural change of Pt species in these electrocatalysts during potential cycling was investigated by transmission electron microscopy images and Pt L III-edge X-ray absorption fine structure. The crystallite size of Pt metal in SiO2/Pt/CNT did not change appreciably during the potential cycling, while Pt metal crystallites in Pt/CNT seriously aggregated. Silica layers enveloping Pt metal particles in SiO2/Pt/CNT prevent the dissolution and redeposition of Pt metal particles as well as the agglomeration of Pt metal particles on the supports.",
author = "Sakae Takenaka and Hiroshi Matsumori and Hideki Matsune and Eishi Tanabe and Masahiro Kishida",
year = "2008",
month = "8",
day = "15",
doi = "10.1149/1.2952665",
language = "English",
volume = "155",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "9",

}

TY - JOUR

T1 - High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC

AU - Takenaka, Sakae

AU - Matsumori, Hiroshi

AU - Matsune, Hideki

AU - Tanabe, Eishi

AU - Kishida, Masahiro

PY - 2008/8/15

Y1 - 2008/8/15

N2 - Multiwalled carbon nanotube (CNT)-supported Pt nanoparticles (Pt/CNT) were covered with silica layers by successive hydrolysis of 3-aminopropyl- triethoxysilane and tetraethoxysilane on CNTs with Pt metal precursors, followed by reduction with hydrogen. The Pt/CNT covered with silica layers (SiO 2/Pt/CNT) was used as a cathode catalyst for a proton exchange membrane fuel cell (PEMFC). The activity of SiO2/Pt/CNT catalyst for the oxygen reduction reaction in a single-cell PEMFC was similar to that of Pt/CNT, in spite of the uniform coverage of Pt with silica layers, indicating that the coverage of Pt/CNT with silica layers did not appreciably decrease the catalytic activity. In addition, SiO2/Pt/CNT electrocatalyst showed high stability during potential cycling from 0.05 to 1.20 V vs reversible hydrogen electrode in an aqueous H2SO4 electrolyte, whereas Pt/CNT significantly deactivated during the experiment. The structural change of Pt species in these electrocatalysts during potential cycling was investigated by transmission electron microscopy images and Pt L III-edge X-ray absorption fine structure. The crystallite size of Pt metal in SiO2/Pt/CNT did not change appreciably during the potential cycling, while Pt metal crystallites in Pt/CNT seriously aggregated. Silica layers enveloping Pt metal particles in SiO2/Pt/CNT prevent the dissolution and redeposition of Pt metal particles as well as the agglomeration of Pt metal particles on the supports.

AB - Multiwalled carbon nanotube (CNT)-supported Pt nanoparticles (Pt/CNT) were covered with silica layers by successive hydrolysis of 3-aminopropyl- triethoxysilane and tetraethoxysilane on CNTs with Pt metal precursors, followed by reduction with hydrogen. The Pt/CNT covered with silica layers (SiO 2/Pt/CNT) was used as a cathode catalyst for a proton exchange membrane fuel cell (PEMFC). The activity of SiO2/Pt/CNT catalyst for the oxygen reduction reaction in a single-cell PEMFC was similar to that of Pt/CNT, in spite of the uniform coverage of Pt with silica layers, indicating that the coverage of Pt/CNT with silica layers did not appreciably decrease the catalytic activity. In addition, SiO2/Pt/CNT electrocatalyst showed high stability during potential cycling from 0.05 to 1.20 V vs reversible hydrogen electrode in an aqueous H2SO4 electrolyte, whereas Pt/CNT significantly deactivated during the experiment. The structural change of Pt species in these electrocatalysts during potential cycling was investigated by transmission electron microscopy images and Pt L III-edge X-ray absorption fine structure. The crystallite size of Pt metal in SiO2/Pt/CNT did not change appreciably during the potential cycling, while Pt metal crystallites in Pt/CNT seriously aggregated. Silica layers enveloping Pt metal particles in SiO2/Pt/CNT prevent the dissolution and redeposition of Pt metal particles as well as the agglomeration of Pt metal particles on the supports.

UR - http://www.scopus.com/inward/record.url?scp=49149087359&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=49149087359&partnerID=8YFLogxK

U2 - 10.1149/1.2952665

DO - 10.1149/1.2952665

M3 - Article

VL - 155

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 9

ER -