Abstract
Ruthenium is the most effective catalyst reported to date for ammonia synthesis under mild conditions, especially when an electron promoter is used. However, electron donation from the promoter has not been sufficient because the promoter contacts with Ru only through its surface. Here, we report a Laves phase intermetallic bulk catalyst, YRu2, which has higher electron density on Ru. This is derived from large electron transfer from Y to Ru, which is first confirmed by X-ray absorption fine structure measurements and theoretical calculations. In addition, YRu2 has high hydrogen solubilities leading to suppression of hydrogen poisoning, a common drawback of Ru-based catalysts. Consequently, YRu2 exhibits higher catalytic activity for ammonia synthesis over 300 times that with pure ruthenium. The present results suggest a simple concept for ammonia synthesis: Laves phase intermetallic compounds of Ru and more electropositive metals are more efficient catalysts than pure Ru because of the large electron promotion and suppression of hydrogen poisoning.
Original language | English |
---|---|
Pages (from-to) | 10468-10475 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry C |
Volume | 122 |
Issue number | 19 |
DOIs | |
Publication status | Published - May 17 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films