TY - JOUR
T1 - High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect
AU - Hayashi, Koichiro
AU - Ono, Kenji
AU - Suzuki, Hiromi
AU - Sawada, Makoto
AU - Moriya, Makoto
AU - Sakamoto, Wataru
AU - Yogo, Toshinobu
PY - 2010/7/28
Y1 - 2010/7/28
N2 - Magnetic nanoparticles (MNPs) generate heat when a high-frequency magnetic field (HFMF) is applied to them. Induction heat is useful not only for hyperthermia treatment but also as a driving force for drug-release. β-Cyclodextrin (CD) can act as drug container because of its inclusion properties. Drugs incorporated in the CD can thus be released through the use of induction heating, or hyperthermic effects, by applying a HFMF. In this study, we have synthesized folic acid (FA) and CD-functionalized superparamagnetic iron oxide nanoparticles, FA-CD-SPIONs, by chemically modifying SPIONs derived from iron(III) allylacetylacetonate. FA is well-known as a targeting ligand for breast cancer tumor and endows the SPIONs with cancer-targeting capability. Immobilization of FA and CD on spinel iron oxide nanoparticles was confirmed by Fourier transform IR (FTIR) and X-ray photoelectron spectroscopy (XPS). The FA-CD-SPIONs have a hydrodynamic diameter of 12.4 nm and prolonged stability in water. They are superparamagnetic with a magnetization of 51 emu g-1 at 16 kOe. They generate heat when an alternating current (AC) magnetic field is applied to them and have a specific absorption rate (SAR) of 132 W g -1 at 230 kHz and 100 Oe. Induction heating triggers drug release from the CD cavity on the particle - a behavior that is controlled by switching the HFMF on and off. The FA-CD-SPIONs are noncytotoxic for cells. Thus, FA-CD-SPIONs can serve as a novel device for performing drug delivery and hyperthermia simultaneously.
AB - Magnetic nanoparticles (MNPs) generate heat when a high-frequency magnetic field (HFMF) is applied to them. Induction heat is useful not only for hyperthermia treatment but also as a driving force for drug-release. β-Cyclodextrin (CD) can act as drug container because of its inclusion properties. Drugs incorporated in the CD can thus be released through the use of induction heating, or hyperthermic effects, by applying a HFMF. In this study, we have synthesized folic acid (FA) and CD-functionalized superparamagnetic iron oxide nanoparticles, FA-CD-SPIONs, by chemically modifying SPIONs derived from iron(III) allylacetylacetonate. FA is well-known as a targeting ligand for breast cancer tumor and endows the SPIONs with cancer-targeting capability. Immobilization of FA and CD on spinel iron oxide nanoparticles was confirmed by Fourier transform IR (FTIR) and X-ray photoelectron spectroscopy (XPS). The FA-CD-SPIONs have a hydrodynamic diameter of 12.4 nm and prolonged stability in water. They are superparamagnetic with a magnetization of 51 emu g-1 at 16 kOe. They generate heat when an alternating current (AC) magnetic field is applied to them and have a specific absorption rate (SAR) of 132 W g -1 at 230 kHz and 100 Oe. Induction heating triggers drug release from the CD cavity on the particle - a behavior that is controlled by switching the HFMF on and off. The FA-CD-SPIONs are noncytotoxic for cells. Thus, FA-CD-SPIONs can serve as a novel device for performing drug delivery and hyperthermia simultaneously.
UR - http://www.scopus.com/inward/record.url?scp=77956624168&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956624168&partnerID=8YFLogxK
U2 - 10.1021/am100237p
DO - 10.1021/am100237p
M3 - Article
C2 - 20568697
AN - SCOPUS:77956624168
SN - 1944-8244
VL - 2
SP - 1903
EP - 1911
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 7
ER -