High-Gain Simple Printed Dipole-Loop Antenna for RF-Energy Harvesting Applications

Mohamed M. Mansour, Kamel S. Sultan, Haruichi Kanaya

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, a compact dual-band antenna for RF energy harvesting applications is presented. The basic antenna structure is formed using a combination between a dipole and a loop antenna to operate at 900 MHz and 1600 MHz, respectively. To enable the antenna to resonate at a dual- band within a compact substrate, two L-shaped vertical arms as a dipole connected with a trapezoidal slot loop. A meandered transmission line is connected to the coplanar slot line to act as a stub to match the input impedance of the dipole and the loop. On the back of the antenna, a reflector is positioned to enhance the forward to back ratio and provide a unidirectional radiation pattern. The antenna has a compact size 0.149\lambda_{o}\times 0.23\lambda_{o} (with respect to the wavelength at the lowest operating frequency), making it comparatively smaller than similar designs. It has a measured fractional bandwidth of 11% at 0.970 GHz at the lower band and 52.9% at the upper band from 1.5 to 2.58 GHz. The antenna performance has a peak gain of 6.5 dB. To prove the antenna normal operation, a prototype is fabricated, tested and the measurements are compared against the simulation results. This antenna is intended for the RF wireless energy harvesting applications.

Original languageEnglish
Title of host publication2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1441-1442
Number of pages2
ISBN (Electronic)9781728166704
DOIs
Publication statusPublished - Jul 5 2020
Event2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Virtually, Toronto, Canada
Duration: Jul 5 2020Jul 10 2020

Publication series

Name2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings

Conference

Conference2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020
CountryCanada
CityVirtually, Toronto
Period7/5/207/10/20

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Instrumentation

Fingerprint Dive into the research topics of 'High-Gain Simple Printed Dipole-Loop Antenna for RF-Energy Harvesting Applications'. Together they form a unique fingerprint.

Cite this