TY - JOUR
T1 - High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks
AU - Zhang, Hongchao
AU - Meng, You
AU - Song, Longfei
AU - Luo, Linqu
AU - Qin, Yuanbin
AU - Han, Ning
AU - Yang, Zaixing
AU - Liu, Lei
AU - Ho, Johnny C.
AU - Wang, Fengyun
N1 - Funding Information:
The work was financially supported by the National Natural Science Foundation of China (Nos. 51402160, 51302154, and 51672229), the General Research Fund of the Research Grants Council of Hong Kong, China (No. CityU 11275916), the Natural Science Foundation of Shandong Province, China (No. ZR2014EMQ011), the Taishan Scholar Program of Shandong Province, China, the Science Technology, and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684), and was supported by a grant from the Shenzhen Research Institute, City University of Hong Kong. The work was also supported by National Demonstration Center for Experimental Applied Physics Education (Qingdao University).
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (>108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics. [Figure not available: see fulltext.].
AB - Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (>108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics. [Figure not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85027105408&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027105408&partnerID=8YFLogxK
U2 - 10.1007/s12274-017-1735-8
DO - 10.1007/s12274-017-1735-8
M3 - Article
AN - SCOPUS:85027105408
SN - 1998-0124
VL - 11
SP - 1227
EP - 1237
JO - Nano Research
JF - Nano Research
IS - 3
ER -