Abstract
This paper proposes a simple, effective, non-scanning method for the visualization of a cell-attached nanointerface. The method uses localized surface plasmon resonance (LSPR) excited homogeneously on a two-dimensional (2D) self-assembled gold-nanoparticle sheet. The LSPR of the gold-nanoparticle sheet provides high-contrast interfacial images due to the confined light within a region a few tens of nanometers from the particles and the enhancement of fluorescence. Test experiments on rat basophilic leukemia (RBL-2H3) cells with fluorescence-labeled actin filaments revealed high axial and lateral resolution even under a regular epifluorescence microscope, which produced higher quality images than those captured under a total internal reflection fluorescence (TIRF) microscope. This non-scanning-type, high-resolution imaging method will be an effective tool for monitoring interfacial phenomena that exhibit relatively rapid reaction kinetics in various cellular and molecular dynamics.
Original language | English |
---|---|
Article number | 3720 |
Journal | Scientific reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 1 2017 |
All Science Journal Classification (ASJC) codes
- General