Higher regularizations of zeros of cuspidal automorphic L-functions of GLd

Masato Wakayama, Yoshinori Yamasaki

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We establish "higher depth" analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic Lfunctions of GLd over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

Original languageEnglish
Pages (from-to)751-767
Number of pages17
JournalJournal de Theorie des Nombres de Bordeaux
Volume23
Issue number3
DOIs
Publication statusPublished - Jan 1 2011

Fingerprint

L-function
Regularization
Determinant
Zero
Number field
Riemann zeta function
Analogue
Generalization

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Higher regularizations of zeros of cuspidal automorphic L-functions of GLd . / Wakayama, Masato; Yamasaki, Yoshinori.

In: Journal de Theorie des Nombres de Bordeaux, Vol. 23, No. 3, 01.01.2011, p. 751-767.

Research output: Contribution to journalArticle

@article{17acc0dc439c403a89212b6273dd74e5,
title = "Higher regularizations of zeros of cuspidal automorphic L-functions of GLd",
abstract = "We establish {"}higher depth{"} analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic Lfunctions of GLd over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.",
author = "Masato Wakayama and Yoshinori Yamasaki",
year = "2011",
month = "1",
day = "1",
doi = "10.5802/jtnb.785",
language = "English",
volume = "23",
pages = "751--767",
journal = "Journal de Theorie des Nombres de Bordeaux",
issn = "1246-7405",
publisher = "Universite de Bordeaux III (Michel de Montaigne)",
number = "3",

}

TY - JOUR

T1 - Higher regularizations of zeros of cuspidal automorphic L-functions of GLd

AU - Wakayama, Masato

AU - Yamasaki, Yoshinori

PY - 2011/1/1

Y1 - 2011/1/1

N2 - We establish "higher depth" analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic Lfunctions of GLd over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

AB - We establish "higher depth" analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic Lfunctions of GLd over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

UR - http://www.scopus.com/inward/record.url?scp=83455210666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=83455210666&partnerID=8YFLogxK

U2 - 10.5802/jtnb.785

DO - 10.5802/jtnb.785

M3 - Article

AN - SCOPUS:83455210666

VL - 23

SP - 751

EP - 767

JO - Journal de Theorie des Nombres de Bordeaux

JF - Journal de Theorie des Nombres de Bordeaux

SN - 1246-7405

IS - 3

ER -