Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)CoIII complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols

Scott E. Schaus, Bridget D. Brandes, Jay F. Larrow, Makoto Tokunaga, Karl B. Hansen, Alexandra E. Gould, Michael E. Furrow, Eric N. Jacobsen

Research output: Contribution to journalArticle

884 Citations (Scopus)

Abstract

The hydrolytic kinetic resolution (HKR) of terminal epoxides catalyzed by chiral (salen)CoIII complex 1·OAc affords both recovered unreacted epoxide and 1,2-diol product in highly enantioenriched form. As such, the HKR provides general access to useful, highly enantioenriched chiral building blocks that are otherwise difficult to access, from inexpensive racemic materials. The reaction has several appealing features from a practical standpoint, including the use of H2O as a reactant and low loadings (0.2-2.0 mol %) of a recyclable, commercially available catalyst. In addition, the HKR displays extraordinary scope, as a wide assortment of sterically and electronically varied epoxides can be resolved to ≥ 99% ee. The corresponding 1,2-diols were produced in good-to-high enantiomeric excess using 0.45 equiv of H2O. Useful and general protocols are provided for the isolation of highly enantioenriched epoxides and diols, as well as for catalyst recovery and recycling. Selectivity factors (krel) were determined for the HKR reactions by measuring the product ee at ca. 20% conversion. In nearly all cases, krel values for the HKR exceed 50, and in several cases are well in excess of 200.

Original languageEnglish
Pages (from-to)1307-1315
Number of pages9
JournalJournal of the American Chemical Society
Volume124
Issue number7
DOIs
Publication statusPublished - Feb 20 2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)Co<sup>III</sup> complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols'. Together they form a unique fingerprint.

  • Cite this