TY - JOUR
T1 - How does high-pressure CO2 affect the morphology of PCL/PLA blends? Visualization of phase separation using in situ ATR-FTIR spectroscopic imaging
AU - Lu, Huiqiang
AU - Kazarian, Sergei G.
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Studies of phase separation in lower critical solution temperature (LCST) polymer blends exposed to high-pressure CO2 provide an insight to their physical properties. Through using in situ high-pressure ATR-FTIR spectroscopic imaging, this work visualized the dynamic process of phase separation in Polycaprolactone (PCL)/Poly (lactic acid) (PLA) blend under high-pressure CO2 for the first time. ATR-FTIR spectroscopic images revealed that phase separation in PCL/PLA blends occurs with increasing temperature or upon exposure to high-pressure CO2. The change in the morphology of PCL-rich and PLA-rich domains in the ATR-FTIR spectroscopic images can be used to compare the extent of phase separation under different conditions. It is found that the extent of phase separation in PCL/PLA blends under high-pressure CO2 is enhanced with increasing temperature, CO2 pressure and exposure time. The effect of different molecular weights of one blend component, PCL, on the phase separation in PCL/PLA blends was also studied. This pioneering methodology opens possibilities to visualize the process of phase separation in LCST polymer blend systems and it can also be applied to study the process of interdiffusion in upper critical solution temperature (UCST) polymer blends.
AB - Studies of phase separation in lower critical solution temperature (LCST) polymer blends exposed to high-pressure CO2 provide an insight to their physical properties. Through using in situ high-pressure ATR-FTIR spectroscopic imaging, this work visualized the dynamic process of phase separation in Polycaprolactone (PCL)/Poly (lactic acid) (PLA) blend under high-pressure CO2 for the first time. ATR-FTIR spectroscopic images revealed that phase separation in PCL/PLA blends occurs with increasing temperature or upon exposure to high-pressure CO2. The change in the morphology of PCL-rich and PLA-rich domains in the ATR-FTIR spectroscopic images can be used to compare the extent of phase separation under different conditions. It is found that the extent of phase separation in PCL/PLA blends under high-pressure CO2 is enhanced with increasing temperature, CO2 pressure and exposure time. The effect of different molecular weights of one blend component, PCL, on the phase separation in PCL/PLA blends was also studied. This pioneering methodology opens possibilities to visualize the process of phase separation in LCST polymer blend systems and it can also be applied to study the process of interdiffusion in upper critical solution temperature (UCST) polymer blends.
UR - http://www.scopus.com/inward/record.url?scp=85089474626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089474626&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2020.118760
DO - 10.1016/j.saa.2020.118760
M3 - Article
C2 - 32827908
AN - SCOPUS:85089474626
VL - 243
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
SN - 1386-1425
M1 - 118760
ER -