H2 and O2 activation - A remarkable insight into hydrogenase

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

This article summarizes the development of a range of organometallic, biomimetic analogues of [NiFe]hydrogenases and their employment in a new generation of H2-O2 fuel cells. It begins with a summary of O2-sensitive and O2-tolerant enzyme chemistry before detailing the properties and functionality of our biomimetic complexes, including: the first ever fully functional model, selective H2 and O2 activation, and the first catalyst using only common metals. These systems are centered on Ni-Fe, Ni-Ru, Ir-Ir, and Rh-Rh cores and use a range of ligands that all follow a set of design principles described herein. The development of a range of organometallic, biomimetic analogues of [NiFe]hydrogenases and their employment in a new generation of H 2-O2 fuel cells are described. This account begins with a summary of O2-sensitive and O2-tolerant enzyme chemistry before detailing the properties and functionality of our biomimetic complexes, including: the first ever fully functional model, selective H2 and O2 activation, and the first catalyst using only common metals.

Original languageEnglish
Pages (from-to)397-409
Number of pages13
JournalChemical Record
Volume14
Issue number3
DOIs
Publication statusPublished - Jun 2014

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry
  • Chemical Engineering(all)
  • Materials Chemistry

Fingerprint Dive into the research topics of 'H<sub>2</sub> and O<sub>2</sub> activation - A remarkable insight into hydrogenase'. Together they form a unique fingerprint.

Cite this