Human serum opsonization of orthopedic biomaterial particles: Protein-binding and monocyte/macrophage activation in vitro

Doo Hoon Sun, Michael C.D. Trindade, Yasuharu Nakashima, William J. Maloney, Stuart B. Goodman, David J. Schurman, R. Lane Smith

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Wear particles generated after total joint arthroplasty activate monocyte/macrophages and incite formation of a granulomatous periprosthetic tissue associated with bone loss and implant loosening. This study tested the hypothesis that selective opsonization of orthopedic implant biomaterial wear particles by human serum proteins influences monocyte/macrophage activation. Serum protein binding to metallic, polymeric, and ceramic particles was determined by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Individual proteins bound to particles were subsequently identified using two-dimensional SDS-PAGE, microsequencing techniques, and SWISS-PROT analysis. Effects of selective protein opsonization on particle-induced monocyte/macrophage activation were assessed by quantification of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha release. Results from one-dimensional gel analyses revealed distinct serum protein-binding patterns specific for each material tested. Two-dimensional gel analysis together with amino acid sequencing of the prominent protein species confirmed the presence of albumin and alpha-1-antitrypsin bound to all particles tested. In contrast to the metallic particles, apolipoprotein was a major species associated with polymeric particles. Opsonization of PMMA particles with purified preparations of each of the identified proteins showed that albumin significantly enhanced particle-induced monocyte/macrophage activation. These data confirm orthopedic biomaterial specific binding of human serum proteins and demonstrate that albumin exacerbates particle-induced monocyte/macrophage activation. Alterations in the chemical and surface properties of orthopedic biomaterials to modulate protein interactions may improve implant longevity.

Original languageEnglish
Pages (from-to)290-298
Number of pages9
JournalJournal of Biomedical Materials Research - Part A
Volume65
Issue number2
DOIs
Publication statusPublished - May 1 2003
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Human serum opsonization of orthopedic biomaterial particles: Protein-binding and monocyte/macrophage activation in vitro'. Together they form a unique fingerprint.

  • Cite this