TY - GEN
T1 - Hydrogen-induced ductility loss of austenitic stainless steels for slow strain rate tensile testing in high-pressure hydrogen gas
AU - Matsuoka, Saburo
AU - Yamabe, Junichiro
AU - Matsunaga, Hisao
N1 - Funding Information:
This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Fundamental Research Project on Advanced Hydrogen Science (2006 to 2012) and Hydrogen Utilization Technology (2013 to 2018).
Publisher Copyright:
© 2017 Trans Tech Publications, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - For slow strain rate tensile (SSRT) test in hydrogen gas, the degradation in relative reduction in area (RRA) of 300-series austenitic stainless steels is mainly attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages. To establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen, a mechanism of the HASCG should be elucidated. At first, this study performed SSRT tests on six types of austenitic stainless steels, Types 304, 316, 316L, 306 (hi-Ni), 304N2 and 304 (N), in high-pressure hydrogen gas and showed that the RRAs were successfully quantified in terms of a newly-proposed nickel-equivalent equation. Then, to elucidate the microscopic mechanism of the HASCG, elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L were carried out in high-pressure hydrogen gas. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Detailed observations of SSRT surface cracks on Types 304 and 316L were also performed, exhibiting that the onset of the HASCG occurred at the true strain of 0.1 or larger in high-pressure hydrogen gas.
AB - For slow strain rate tensile (SSRT) test in hydrogen gas, the degradation in relative reduction in area (RRA) of 300-series austenitic stainless steels is mainly attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages. To establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen, a mechanism of the HASCG should be elucidated. At first, this study performed SSRT tests on six types of austenitic stainless steels, Types 304, 316, 316L, 306 (hi-Ni), 304N2 and 304 (N), in high-pressure hydrogen gas and showed that the RRAs were successfully quantified in terms of a newly-proposed nickel-equivalent equation. Then, to elucidate the microscopic mechanism of the HASCG, elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L were carried out in high-pressure hydrogen gas. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Detailed observations of SSRT surface cracks on Types 304 and 316L were also performed, exhibiting that the onset of the HASCG occurred at the true strain of 0.1 or larger in high-pressure hydrogen gas.
UR - http://www.scopus.com/inward/record.url?scp=85009724465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009724465&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/SSP.258.259
DO - 10.4028/www.scientific.net/SSP.258.259
M3 - Conference contribution
AN - SCOPUS:85009724465
SN - 9783038356264
T3 - Solid State Phenomena
SP - 259
EP - 264
BT - Materials Structure and Micromechanics of Fracture VIII
A2 - Sandera, Pavel
PB - Trans Tech Publications Ltd
T2 - 8th International Conference on Materials Structure and Micromechanics of Fracture, MSMF8
Y2 - 27 July 2016 through 29 July 2016
ER -