IAC-17.C1.1.6: Magnetic attitude control of satellites using coarse pulse-width-modulation of magnetorquers

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Magnetorquers enable energy efficient attitude control of microsatellites in low Earth orbits. The challenging problem for the magnetic attitude control is the limitations on their component capability, and high-frequency Pulse- Width-Modulation (PWM) actuations are difficult to implement. Moreover since the magnetorquers generate control torques into a plane orthogonal to the geomagnetic field, three-axis attitude control using only the magnetorquers is challenging. In this context, this study deals with the magnetic attitude control of satellites using only magnetorquers that are driven with coarse PWM. The coarse PWM actuations in this study mean that the magnetorquers are successively actuated by on-state and then off-state in each actuation cycle of a few seconds. The difficulties of the coarse PWM actuations stem from the followings: 1) Conventional techniques for feedback controllers are hard to be applied because the magnitude of the magnetic moment is constant. 2) The dynamics of the satellite has nonlinear terms in control torques due to coarse PWM actuations. First, the dynamics of the satellite with on-off inputs are formulated as a discrete system in order to deal with the coarse PWM actuations of the magnetorquers. Then, to tackle with the nonlinearity of the control torques, averaging method for general case is used for reducing to the problem that is dynamic quantizer is applicable. As a preliminary study, dynamic quantizer is designed for satellites in sun-synchronous orbits and is verified for the coarse input system.

Original languageEnglish
Title of host publication68th International Astronautical Congress, IAC 2017
Subtitle of host publicationUnlocking Imagination, Fostering Innovation and Strengthening Security
PublisherInternational Astronautical Federation, IAF
Pages6840-6844
Number of pages5
ISBN (Print)9781510855373
Publication statusPublished - Jan 1 2017
Externally publishedYes
Event68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017 - Adelaide, Australia
Duration: Sep 25 2017Sep 29 2017

Publication series

NameProceedings of the International Astronautical Congress, IAC
Volume10
ISSN (Print)0074-1795

Other

Other68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017
CountryAustralia
CityAdelaide
Period9/25/179/29/17

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'IAC-17.C1.1.6: Magnetic attitude control of satellites using coarse pulse-width-modulation of magnetorquers'. Together they form a unique fingerprint.

Cite this