Identification of anion channels responsible for fluoride resistance in oral streptococci

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F- channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.

Original languageEnglish
Article numbere0165900
JournalPloS one
Volume11
Issue number11
DOIs
Publication statusPublished - Nov 2016

Fingerprint

Streptococcus
fluorides
Fluorides
Streptococcus sanguinis
anions
Anions
mouth
Streptococcus mutans
Streptococcus anginosus
resistance mechanisms
additive effect
Healthy Volunteers
Genes

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Identification of anion channels responsible for fluoride resistance in oral streptococci. / Men, Xiaochen; Shibata, Yukie; Takeshita, Toru; Yamashita, Yoshihisa.

In: PloS one, Vol. 11, No. 11, e0165900, 11.2016.

Research output: Contribution to journalArticle

@article{a51b7e0ee3784fe3a385f8ec0432cae1,
title = "Identification of anion channels responsible for fluoride resistance in oral streptococci",
abstract = "Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10{\%} of 166 orally healthy subjects with ≥ 0.01{\%} of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F- channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.",
author = "Xiaochen Men and Yukie Shibata and Toru Takeshita and Yoshihisa Yamashita",
year = "2016",
month = "11",
doi = "10.1371/journal.pone.0165900",
language = "English",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Identification of anion channels responsible for fluoride resistance in oral streptococci

AU - Men, Xiaochen

AU - Shibata, Yukie

AU - Takeshita, Toru

AU - Yamashita, Yoshihisa

PY - 2016/11

Y1 - 2016/11

N2 - Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F- channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.

AB - Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F- channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.

UR - http://www.scopus.com/inward/record.url?scp=84994577451&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84994577451&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0165900

DO - 10.1371/journal.pone.0165900

M3 - Article

C2 - 27824896

AN - SCOPUS:84994577451

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 11

M1 - e0165900

ER -