Identification of intermediates in the bile acid synthetic pathway as ligands for the farnesoid X receptor

Tomoko Nishimaki-Mogami, Mizuho Une, Tomofumi Fujino, Yoji Sato, Norimasa Tamehiro, Yosuke Kawahara, Koichi Shudo, Kazuhide Inoue

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)


Bile acid synthesis from cholesterol is tightly regulated via a feedback mechanism mediated by the farnesoid X receptor (FXR), a nuclear receptor activated by bile acids. Synthesis via the classic pathway is initiated by a series of cholesterol ring modifications and followed by the side chain cleavage. Several intermediates accumulate or are excreted as end products of the pathway in diseases involving defective bile acid biosynthesis. In this study, we investigated the ability of these intermediates to activate human FXR. In a cell-based reporter assay and coactivator recruitment assays in vitro, early intermediates possessing an intact cholesterol side chain were inactive, whereas 26- or 25-hydroxylated bile alcohols and C27 bile acids were highly efficacious ligands for FXR at a level comparable to that of the most potent physiological ligand, chenodeoxycholic acid. Treatment of HepG2 cells with these precursors repressed the rate-limiting cholesterol 7α-hydroxylase mRNA level and induced the small heterodimer partner and the bile salt export pump mRNA, indicating the ability to regulate bile acid synthesis and excretion. Because 26-hydroxylated bile alcohols and C 27 bile acids are known to be evolutionary precursors of bile acids in mammals, our findings suggest that human FXR may have retained affinity to these precursors during evolution.

Original languageEnglish
Pages (from-to)1538-1545
Number of pages8
JournalJournal of Lipid Research
Issue number8
Publication statusPublished - Aug 2004
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Endocrinology
  • Cell Biology


Dive into the research topics of 'Identification of intermediates in the bile acid synthetic pathway as ligands for the farnesoid X receptor'. Together they form a unique fingerprint.

Cite this