TY - JOUR
T1 - IL-4 Augments IL-31/IL-31 Receptor Alpha Interaction Leading to Enhanced Ccl 17 and Ccl 22 production in dendritic cells
T2 - Implications for atopic dermatitis
AU - Miake, Sho
AU - Tsuji, Gaku
AU - Takemura, Masaki
AU - Hashimoto-Hachiya, Akiko
AU - Vu, Yen Hai
AU - Furue, Masutaka
AU - Nakahara, Takeshi
N1 - Funding Information:
Funding: This work was partly supported by grants from the Ministry of Health, Labor and Welfare, Japan, and JSPS KAKENHI (Grant number: JP17K10213).
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/8/2
Y1 - 2019/8/2
N2 - Severe pruritus is a characteristic feature of atopic dermatitis (AD) and is closely related to its activity. Recent studies have shown that IL-31 is a key determinant of pruritus in AD. Anti-IL-31 receptor alpha (IL-31RA) antibody treatment has also been reported to improve pruritus clinically, subsequently contributing to the attenuation of AD disease activity. Therefore, IL-31 has been thought to be an important cytokine for regulating pruritus and AD disease activity; however, how IL-31 is involved in the immune response in AD has remained largely unknown. Epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) derived from bone marrow cells have been reported to play a critical role in AD pathogenesis. LCs and DCs produce Ccl 17 and Ccl 22, which chemoattract Th2 cells, leading to AD development. Therefore, we aimed to clarify how IL-31/IL-31RA interaction affects Ccl 17 and Ccl 22 production. To test this, we analyzed murine bone marrow-derived DCs (BMDCs) stimulated with IL-4, an important cytokine in AD development. We found that IL-31RA expression was upregulated by IL-4 stimulation in a dose-dependent manner in BMDCs. Furthermore, IL-31 upregulates Ccl 17 and Ccl 22 production in the presence of IL-4, whereas IL-31 stimulation alone did not produce Ccl 17 and Ccl 22. These findings suggest that IL-4 mediates IL-31RA expression and IL-31/IL-31RA interaction augments Ccl 17 and Ccl 22 production in BMDCs, which promotes Th2-deviated immune response in AD. Since we previously reported that soybean tar Glyteer, an aryl hydrocarbon receptor (AHR) ligand, impairs IL-4/Stat 6 signaling in BMDCs, we examined whether Glyteer affects IL-31RA expression induced by IL-4 stimulation. Glyteer inhibited upregulation of IL-31RA expression induced by IL-4 stimulation in a dose-dependent manner. Glyteer also inhibited Ccl 17 and Ccl 22 production induced by IL-4 and IL-31 stimulation. Taken together, these findings suggest that Glyteer treatment may improve AD disease activity by impairing IL-31/IL-31RA interaction in DCs.
AB - Severe pruritus is a characteristic feature of atopic dermatitis (AD) and is closely related to its activity. Recent studies have shown that IL-31 is a key determinant of pruritus in AD. Anti-IL-31 receptor alpha (IL-31RA) antibody treatment has also been reported to improve pruritus clinically, subsequently contributing to the attenuation of AD disease activity. Therefore, IL-31 has been thought to be an important cytokine for regulating pruritus and AD disease activity; however, how IL-31 is involved in the immune response in AD has remained largely unknown. Epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) derived from bone marrow cells have been reported to play a critical role in AD pathogenesis. LCs and DCs produce Ccl 17 and Ccl 22, which chemoattract Th2 cells, leading to AD development. Therefore, we aimed to clarify how IL-31/IL-31RA interaction affects Ccl 17 and Ccl 22 production. To test this, we analyzed murine bone marrow-derived DCs (BMDCs) stimulated with IL-4, an important cytokine in AD development. We found that IL-31RA expression was upregulated by IL-4 stimulation in a dose-dependent manner in BMDCs. Furthermore, IL-31 upregulates Ccl 17 and Ccl 22 production in the presence of IL-4, whereas IL-31 stimulation alone did not produce Ccl 17 and Ccl 22. These findings suggest that IL-4 mediates IL-31RA expression and IL-31/IL-31RA interaction augments Ccl 17 and Ccl 22 production in BMDCs, which promotes Th2-deviated immune response in AD. Since we previously reported that soybean tar Glyteer, an aryl hydrocarbon receptor (AHR) ligand, impairs IL-4/Stat 6 signaling in BMDCs, we examined whether Glyteer affects IL-31RA expression induced by IL-4 stimulation. Glyteer inhibited upregulation of IL-31RA expression induced by IL-4 stimulation in a dose-dependent manner. Glyteer also inhibited Ccl 17 and Ccl 22 production induced by IL-4 and IL-31 stimulation. Taken together, these findings suggest that Glyteer treatment may improve AD disease activity by impairing IL-31/IL-31RA interaction in DCs.
UR - http://www.scopus.com/inward/record.url?scp=85071563381&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071563381&partnerID=8YFLogxK
U2 - 10.3390/ijms20164053
DO - 10.3390/ijms20164053
M3 - Article
C2 - 31434203
AN - SCOPUS:85071563381
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 16
M1 - 4053
ER -