TY - JOUR
T1 - Imaging crustal features and Moho depths through enhancements and inversion of gravity data from the Philippine island arc system
AU - Casulla, Mel Anthony A.
AU - Mizunaga, Hideki
AU - Tanaka, Toshiaki
AU - Dimalanta, Carla B.
N1 - Funding Information:
The authors thank the Department of Environment and Natural Resources-Mines and Geosciences Bureau (DENR-MGB), Philippines, and Japan International Cooperation Agency (JICA) for supporting this study. We also thank the members of the Exploration Geophysics Lab. at the Kyushu University–Department of Earth Resource Engineering for their comments and suggestions that improved the quality of the manuscript. Gravity data from Bureau Gravimetrique International (BGI)/IAG International Gravity Field Service are greatly acknowledged. The authors are also thankful to the editor and the three anonymous reviewers who gave significant comments and suggestions for the improvement of this manuscript.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - The Philippine archipelago is a complex island arc system, where many regions still lack geopotential field studies. The high-resolution isostatic anomaly and free-air anomaly digital grids from the World Gravity Map (WGM) were processed and analyzed to present a general discussion of the Philippines’ gravity signatures and contribute to understanding its regional geology and tectonics. The isostatic anomaly map was continued upward to investigate the high-density ophiolitic basement rocks and low-gravity sedimentary basins at depth. The first vertical derivative (1VD) filter was applied to the free-air anomaly grid map to locate regional structures represented by density contrast boundaries. The depth to the top of the Moho and basement rock over the Sulu Sea was computed using the two-dimensional (2-D) radially averaged power spectrum analysis. Three-dimensional (3-D) gravity inversion was applied to some major sedimentary basins in the Philippines to present 3-D subsurface density contrast models. The interpreted gravity maps highlighted prominent geologic features (e.g., trench manifestation, ophiolite distribution, basin thickness). The negative isostatic anomalies (< 0 mGal) represent the thick sedimentary basins, while the moderate signatures (0 to 80 mGal) correspond to the metamorphic belts. The distinct very high-gravity anomalies (> 80 mGal) typify the ophiolitic basement rocks. The gravity data’s upward continuation revealed contrasting deep gravity signatures; the central Philippines with continental affinity (with 20–35 mGal) was distinguished from the regions with oceanic affinity (with 45–200 mGal). The 1VD map over the Sulu Sea showed anomalies associated with shallow features dominantly related to the Cagayan Ridge. The 2-D radially averaged power spectrum analysis exposed gravity anomalies with tectonic significance (e.g., basement characterization, Moho depth estimation). The estimated average Moho depth in the Sulu Sea is from 12 to 22 km, while the average basement depth is within the range of 5 to 11 km. Lastly, the 3-D subsurface density contrast models characterized the very low-density zones representing the deep (> 7 km) sedimentary basins in the northern Cagayan Valley and southern Central Luzon basins. Furthermore, thin (~ 3.5 km) sedimentary formations are inferred for the low-density areas in northern Agusan-Davao and eastern Cotabato basins. [Figure not available: see fulltext.].
AB - The Philippine archipelago is a complex island arc system, where many regions still lack geopotential field studies. The high-resolution isostatic anomaly and free-air anomaly digital grids from the World Gravity Map (WGM) were processed and analyzed to present a general discussion of the Philippines’ gravity signatures and contribute to understanding its regional geology and tectonics. The isostatic anomaly map was continued upward to investigate the high-density ophiolitic basement rocks and low-gravity sedimentary basins at depth. The first vertical derivative (1VD) filter was applied to the free-air anomaly grid map to locate regional structures represented by density contrast boundaries. The depth to the top of the Moho and basement rock over the Sulu Sea was computed using the two-dimensional (2-D) radially averaged power spectrum analysis. Three-dimensional (3-D) gravity inversion was applied to some major sedimentary basins in the Philippines to present 3-D subsurface density contrast models. The interpreted gravity maps highlighted prominent geologic features (e.g., trench manifestation, ophiolite distribution, basin thickness). The negative isostatic anomalies (< 0 mGal) represent the thick sedimentary basins, while the moderate signatures (0 to 80 mGal) correspond to the metamorphic belts. The distinct very high-gravity anomalies (> 80 mGal) typify the ophiolitic basement rocks. The gravity data’s upward continuation revealed contrasting deep gravity signatures; the central Philippines with continental affinity (with 20–35 mGal) was distinguished from the regions with oceanic affinity (with 45–200 mGal). The 1VD map over the Sulu Sea showed anomalies associated with shallow features dominantly related to the Cagayan Ridge. The 2-D radially averaged power spectrum analysis exposed gravity anomalies with tectonic significance (e.g., basement characterization, Moho depth estimation). The estimated average Moho depth in the Sulu Sea is from 12 to 22 km, while the average basement depth is within the range of 5 to 11 km. Lastly, the 3-D subsurface density contrast models characterized the very low-density zones representing the deep (> 7 km) sedimentary basins in the northern Cagayan Valley and southern Central Luzon basins. Furthermore, thin (~ 3.5 km) sedimentary formations are inferred for the low-density areas in northern Agusan-Davao and eastern Cotabato basins. [Figure not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85126184313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126184313&partnerID=8YFLogxK
U2 - 10.1186/s40645-022-00473-8
DO - 10.1186/s40645-022-00473-8
M3 - Article
AN - SCOPUS:85126184313
SN - 2197-4284
VL - 9
JO - Progress in Earth and Planetary Science
JF - Progress in Earth and Planetary Science
IS - 1
M1 - 16
ER -