TY - JOUR
T1 - Impact of the second-order self-forces on the dephasing of the gravitational waves from quasicircular extreme mass-ratio inspirals
AU - Isoyama, Soichiro
AU - Fujita, Ryuichi
AU - Sago, Norichika
AU - Tagoshi, Hideyuki
AU - Tanaka, Takahiro
PY - 2013/1/7
Y1 - 2013/1/7
N2 - The accurate calculation of the long-term phase evolution of gravitational wave (GW) forms from extreme (intermediate) mass-ratio inspirals [E(I)MRIs] is an inevitable step to extract information from this system. In order to achieve this goal, it is believed that we need to understand the gravitational self-forces. However, it has not been quantitatively demonstrated that the second-order self-forces are necessary for this purpose. In this paper, we revisit the problem to estimate the order of magnitude of the dephasing caused by the second-order self-forces on a small body in a quasicircular orbit around a Kerr black hole, based on the knowledge of the post-Newtonian (PN) approximation and invoking the energy balance argument. In particular, we focus on the averaged dissipative part of the self-force, since it gives the leading-order contribution among their various components. To avoid the possibility of the energy flux of GWs becoming negative, we propose a new simple resummation called exponential resummation, which assures the positivity of the energy flux. In order to estimate the magnitude of the yet-unknown second-order self-forces, here we point out the scaling property in the absolute value of the PN coefficients of the energy flux. Using these new tools, we evaluate the expected magnitude of dephasing. Our analysis indicates that the dephasing due to the second-order self-forces for quasicircular E(I)MRIs may be well captured by the 3 PN energy flux, once we obtain all the spin-dependent terms, except for the case with an extremely large spin of the central Kerr black hole.
AB - The accurate calculation of the long-term phase evolution of gravitational wave (GW) forms from extreme (intermediate) mass-ratio inspirals [E(I)MRIs] is an inevitable step to extract information from this system. In order to achieve this goal, it is believed that we need to understand the gravitational self-forces. However, it has not been quantitatively demonstrated that the second-order self-forces are necessary for this purpose. In this paper, we revisit the problem to estimate the order of magnitude of the dephasing caused by the second-order self-forces on a small body in a quasicircular orbit around a Kerr black hole, based on the knowledge of the post-Newtonian (PN) approximation and invoking the energy balance argument. In particular, we focus on the averaged dissipative part of the self-force, since it gives the leading-order contribution among their various components. To avoid the possibility of the energy flux of GWs becoming negative, we propose a new simple resummation called exponential resummation, which assures the positivity of the energy flux. In order to estimate the magnitude of the yet-unknown second-order self-forces, here we point out the scaling property in the absolute value of the PN coefficients of the energy flux. Using these new tools, we evaluate the expected magnitude of dephasing. Our analysis indicates that the dephasing due to the second-order self-forces for quasicircular E(I)MRIs may be well captured by the 3 PN energy flux, once we obtain all the spin-dependent terms, except for the case with an extremely large spin of the central Kerr black hole.
UR - http://www.scopus.com/inward/record.url?scp=84872245579&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872245579&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.87.024010
DO - 10.1103/PhysRevD.87.024010
M3 - Article
AN - SCOPUS:84872245579
SN - 1550-7998
VL - 87
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 2
M1 - 024010
ER -