TY - GEN
T1 - Impinging atomization enhanced by microjet injection - effect, mechanism and optimization
AU - Inoue, Chihiro
AU - Watanabe, Toshinori
AU - Himeno, Takehiro
AU - Uzawa, Seiji
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Impinging atomization, which has been widely utilized in liquid rocket propulsion systems, is able to produce fine drops at a rated operation. In contrast, the atomization characteristics deteriorate under off design conditions when injection velocity comes to be slower. In the present study, for improving atomization characteristics at off design conditions, an effective technique is verified utilizing small amount of gas (microjet) injection. The microjet is supplied from a pressurized reservoir and is injected from the center of the liquid nozzles toward the impingement point. To clarify the flow field and the mechanism of the effect, experimental visualizations, drop size measurements and corresponding numerical analyses are carried out. It is elucidated that Sauter Mean Diameter (SMD) becomes one-tenth of the original SMD by the microjet injection with the amount of only 1% of liquid mass flow rate. The dominant non-dimensional number is found to be the ratio of the dynamic pressure (microjet/liquid jet) at the impingement point. The optimized atomization efficiency is achieved when the dynamic pressure ratio is approximately two.
AB - Impinging atomization, which has been widely utilized in liquid rocket propulsion systems, is able to produce fine drops at a rated operation. In contrast, the atomization characteristics deteriorate under off design conditions when injection velocity comes to be slower. In the present study, for improving atomization characteristics at off design conditions, an effective technique is verified utilizing small amount of gas (microjet) injection. The microjet is supplied from a pressurized reservoir and is injected from the center of the liquid nozzles toward the impingement point. To clarify the flow field and the mechanism of the effect, experimental visualizations, drop size measurements and corresponding numerical analyses are carried out. It is elucidated that Sauter Mean Diameter (SMD) becomes one-tenth of the original SMD by the microjet injection with the amount of only 1% of liquid mass flow rate. The dominant non-dimensional number is found to be the ratio of the dynamic pressure (microjet/liquid jet) at the impingement point. The optimized atomization efficiency is achieved when the dynamic pressure ratio is approximately two.
UR - http://www.scopus.com/inward/record.url?scp=85071540060&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071540060&partnerID=8YFLogxK
U2 - 10.2514/6.2013-3705
DO - 10.2514/6.2013-3705
M3 - Conference contribution
AN - SCOPUS:85071540060
SN - 9781624102226
T3 - 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
BT - 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, JPC 2013
Y2 - 14 July 2013 through 17 July 2013
ER -