Improved cooling capacity of a solar heat driven adsorption chiller

R. A. Rouf, N. Jahan, K. C.A. Alam, A. A. Sultan, B. B. Saha, S. C. Saha

    Research output: Contribution to journalArticlepeer-review

    28 Citations (Scopus)


    This paper discusses two investigations which indicate the benefit of exploiting multiple adsorption containers to increase the cooling energy output of a limited supply of solar heat. First, the optimum working conditions on the output of a solar-powered 3-bed adsorption cooling scheme working in a series and secondly, the performance of a new parallel system of 4-beds has been investigated. It is seen that especially when the source of heat is limited, the output of solar assisted adsorption cooler can be enhanced if the total amount of adsorbent can be distributed in three identical small adsorption beds. As a continuation of the study with multiple beds, the performance of a newly proposed cooling unit with 4-beds has also been studied. This parallel system of 4-beds is considered in such a way that, when one conventional 2-bed chiller is in adsorption/desorption mode then the other chiller is in the preheat/pre-cool mode and the system goes on alternately. Both of these chillers are linked with a single evaporator and condenser, resulting in a continuous evaporation and condensation process. Both of these new systems with multiple beds can utilize maximum entropy as exploits a longer precool time and improves specific cooling capacity (SCC).

    Original languageEnglish
    Article number100568
    JournalCase Studies in Thermal Engineering
    Publication statusPublished - Feb 2020

    All Science Journal Classification (ASJC) codes

    • Engineering (miscellaneous)
    • Fluid Flow and Transfer Processes


    Dive into the research topics of 'Improved cooling capacity of a solar heat driven adsorption chiller'. Together they form a unique fingerprint.

    Cite this