Improved photocatalytic hydrogen evolution driven by chloro(terpyridine)platinum(II) derivatives tethered to a single pendant viologen acceptor

Shu Lin, Kyoji Kitamoto, Hironobu Ozawa, Ken Sakai

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Three chloro(4′-(N-methylpyridinium)-2,2′:6′,2′′-terpyridine)platinum(ii) (abbreviated as PtL2+) derivatives tethered to a single alkyl viologen unit (-(CH2)n-CH2-N+C5H4-C5H4N+-CH3; abbreviated as -Cn-MV2+, where n = 1, 3, and 4), i.e., PtL2+-Cn-MV2+, have been synthesized and investigated in detail. It is shown that the turnover number (TON) for the photocatalytic H2 evolution from water in the presence of a sacrificial electron donor EDTA (ethylenediaminetetraacetic acid disodium salt) is dramatically improved by the attachment of a single alkyl MV2+ unit (TON = 21.5-25.2, 12 h). Spectrophotometric studies reveal that the photoirradiation of PtL2+-Cn-MV2+ in the presence of EDTA initially leads to the formation of a 1-electron-reduced species, and then to a 2-electron-reduced species, where reductive quenching of a photoexcited species is a major path to the reduced photoproduct in each step. Electrochemical studies show that two consecutive 1-electron reductions at the PtL2+ unit are nearly overlapped with the corresponding reductions at the MV2+ unit. The 1-electron-reduced species can be thus expressed as either PtL+-Cn-MV2+ or PtL2+-Cn-MV+, while the 2-electron-reduced one as PtL+-Cn-MV+. Moreover, the latter products behave as stacked species involving three types of π-dimer sites, (PtL+)2, (MV+)2, and (PtL+)(MV+), and do not drive thermal H2 evolution according to the reaction: PtL+-Cn-MV+ + 2H+ → PtL2+-Cn-MV2+ + H2. The H2 evolution from water photocatalyzed by PtL2+-Cn-MV2+ has been found to occur via formation of 3-electron-reduced species; PtL+-Cn-MV+ + EDTA + hν → PtL0-Cn-MV+ (or PtL+-Cn-MV0) + EDTA(ox), and PtL0-Cn-MV+ (or PtL+-Cn-MV0) + 2H+ → PtL+-Cn-MV2+ (or PtL2+-Cn-MV+) + H2.

Original languageEnglish
Pages (from-to)10643-10654
Number of pages12
JournalDalton Transactions
Volume45
Issue number26
DOIs
Publication statusPublished - Jan 1 2016

Fingerprint

Viologens
Hydrogen
Edetic Acid
Derivatives
Electrons
Water
chloroterpyridineplatinum(II)
Platinum
Dimers
Quenching
Salts

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry

Cite this

Improved photocatalytic hydrogen evolution driven by chloro(terpyridine)platinum(II) derivatives tethered to a single pendant viologen acceptor. / Lin, Shu; Kitamoto, Kyoji; Ozawa, Hironobu; Sakai, Ken.

In: Dalton Transactions, Vol. 45, No. 26, 01.01.2016, p. 10643-10654.

Research output: Contribution to journalArticle

@article{18d4e8d0221b41b58d3bbbc0ede46ec3,
title = "Improved photocatalytic hydrogen evolution driven by chloro(terpyridine)platinum(II) derivatives tethered to a single pendant viologen acceptor",
abstract = "Three chloro(4′-(N-methylpyridinium)-2,2′:6′,2′′-terpyridine)platinum(ii) (abbreviated as PtL2+) derivatives tethered to a single alkyl viologen unit (-(CH2)n-CH2-N+C5H4-C5H4N+-CH3; abbreviated as -Cn-MV2+, where n = 1, 3, and 4), i.e., PtL2+-Cn-MV2+, have been synthesized and investigated in detail. It is shown that the turnover number (TON) for the photocatalytic H2 evolution from water in the presence of a sacrificial electron donor EDTA (ethylenediaminetetraacetic acid disodium salt) is dramatically improved by the attachment of a single alkyl MV2+ unit (TON = 21.5-25.2, 12 h). Spectrophotometric studies reveal that the photoirradiation of PtL2+-Cn-MV2+ in the presence of EDTA initially leads to the formation of a 1-electron-reduced species, and then to a 2-electron-reduced species, where reductive quenching of a photoexcited species is a major path to the reduced photoproduct in each step. Electrochemical studies show that two consecutive 1-electron reductions at the PtL2+ unit are nearly overlapped with the corresponding reductions at the MV2+ unit. The 1-electron-reduced species can be thus expressed as either PtL+-Cn-MV2+ or PtL2+-Cn-MV+, while the 2-electron-reduced one as PtL+-Cn-MV+. Moreover, the latter products behave as stacked species involving three types of π-dimer sites, (PtL+)2, (MV+)2, and (PtL+)(MV+), and do not drive thermal H2 evolution according to the reaction: PtL+-Cn-MV+ + 2H+ → PtL2+-Cn-MV2+ + H2. The H2 evolution from water photocatalyzed by PtL2+-Cn-MV2+ has been found to occur via formation of 3-electron-reduced species; PtL+-Cn-MV+ + EDTA + hν → PtL0-Cn-MV+ (or PtL+-Cn-MV0) + EDTA(ox), and PtL0-Cn-MV+ (or PtL+-Cn-MV0) + 2H+ → PtL+-Cn-MV2+ (or PtL2+-Cn-MV+) + H2.",
author = "Shu Lin and Kyoji Kitamoto and Hironobu Ozawa and Ken Sakai",
year = "2016",
month = "1",
day = "1",
doi = "10.1039/c6dt01456a",
language = "English",
volume = "45",
pages = "10643--10654",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "26",

}

TY - JOUR

T1 - Improved photocatalytic hydrogen evolution driven by chloro(terpyridine)platinum(II) derivatives tethered to a single pendant viologen acceptor

AU - Lin, Shu

AU - Kitamoto, Kyoji

AU - Ozawa, Hironobu

AU - Sakai, Ken

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Three chloro(4′-(N-methylpyridinium)-2,2′:6′,2′′-terpyridine)platinum(ii) (abbreviated as PtL2+) derivatives tethered to a single alkyl viologen unit (-(CH2)n-CH2-N+C5H4-C5H4N+-CH3; abbreviated as -Cn-MV2+, where n = 1, 3, and 4), i.e., PtL2+-Cn-MV2+, have been synthesized and investigated in detail. It is shown that the turnover number (TON) for the photocatalytic H2 evolution from water in the presence of a sacrificial electron donor EDTA (ethylenediaminetetraacetic acid disodium salt) is dramatically improved by the attachment of a single alkyl MV2+ unit (TON = 21.5-25.2, 12 h). Spectrophotometric studies reveal that the photoirradiation of PtL2+-Cn-MV2+ in the presence of EDTA initially leads to the formation of a 1-electron-reduced species, and then to a 2-electron-reduced species, where reductive quenching of a photoexcited species is a major path to the reduced photoproduct in each step. Electrochemical studies show that two consecutive 1-electron reductions at the PtL2+ unit are nearly overlapped with the corresponding reductions at the MV2+ unit. The 1-electron-reduced species can be thus expressed as either PtL+-Cn-MV2+ or PtL2+-Cn-MV+, while the 2-electron-reduced one as PtL+-Cn-MV+. Moreover, the latter products behave as stacked species involving three types of π-dimer sites, (PtL+)2, (MV+)2, and (PtL+)(MV+), and do not drive thermal H2 evolution according to the reaction: PtL+-Cn-MV+ + 2H+ → PtL2+-Cn-MV2+ + H2. The H2 evolution from water photocatalyzed by PtL2+-Cn-MV2+ has been found to occur via formation of 3-electron-reduced species; PtL+-Cn-MV+ + EDTA + hν → PtL0-Cn-MV+ (or PtL+-Cn-MV0) + EDTA(ox), and PtL0-Cn-MV+ (or PtL+-Cn-MV0) + 2H+ → PtL+-Cn-MV2+ (or PtL2+-Cn-MV+) + H2.

AB - Three chloro(4′-(N-methylpyridinium)-2,2′:6′,2′′-terpyridine)platinum(ii) (abbreviated as PtL2+) derivatives tethered to a single alkyl viologen unit (-(CH2)n-CH2-N+C5H4-C5H4N+-CH3; abbreviated as -Cn-MV2+, where n = 1, 3, and 4), i.e., PtL2+-Cn-MV2+, have been synthesized and investigated in detail. It is shown that the turnover number (TON) for the photocatalytic H2 evolution from water in the presence of a sacrificial electron donor EDTA (ethylenediaminetetraacetic acid disodium salt) is dramatically improved by the attachment of a single alkyl MV2+ unit (TON = 21.5-25.2, 12 h). Spectrophotometric studies reveal that the photoirradiation of PtL2+-Cn-MV2+ in the presence of EDTA initially leads to the formation of a 1-electron-reduced species, and then to a 2-electron-reduced species, where reductive quenching of a photoexcited species is a major path to the reduced photoproduct in each step. Electrochemical studies show that two consecutive 1-electron reductions at the PtL2+ unit are nearly overlapped with the corresponding reductions at the MV2+ unit. The 1-electron-reduced species can be thus expressed as either PtL+-Cn-MV2+ or PtL2+-Cn-MV+, while the 2-electron-reduced one as PtL+-Cn-MV+. Moreover, the latter products behave as stacked species involving three types of π-dimer sites, (PtL+)2, (MV+)2, and (PtL+)(MV+), and do not drive thermal H2 evolution according to the reaction: PtL+-Cn-MV+ + 2H+ → PtL2+-Cn-MV2+ + H2. The H2 evolution from water photocatalyzed by PtL2+-Cn-MV2+ has been found to occur via formation of 3-electron-reduced species; PtL+-Cn-MV+ + EDTA + hν → PtL0-Cn-MV+ (or PtL+-Cn-MV0) + EDTA(ox), and PtL0-Cn-MV+ (or PtL+-Cn-MV0) + 2H+ → PtL+-Cn-MV2+ (or PtL2+-Cn-MV+) + H2.

UR - http://www.scopus.com/inward/record.url?scp=84976589196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84976589196&partnerID=8YFLogxK

U2 - 10.1039/c6dt01456a

DO - 10.1039/c6dt01456a

M3 - Article

AN - SCOPUS:84976589196

VL - 45

SP - 10643

EP - 10654

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 26

ER -