Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions

Yasutaka Hirokawa, Yuki Maki, Taizo Hanai

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79 mM, 0.29 g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6 mM, 1.16 g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1 mM, 1.22 g/l) and this was higher than glycerol accumulation (9.46 mM, 0.87 g/l). The improved titer was over 4-fold higher than that of our previous study.

Original languageEnglish
Pages (from-to)192-199
Number of pages8
JournalMetabolic Engineering
Volume39
DOIs
Publication statusPublished - Jan 1 2017

Fingerprint

Synechococcus
Cyanobacteria
Metabolic Networks and Pathways
Glycerol
Gene expression
Gene Expression
Genes
Carbon dioxide
Carbon Dioxide
Metabolites
1,3-propanediol
Chemical analysis
Yeast
Escherichia coli
Klebsiella pneumoniae
Saccharomyces cerevisiae

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this

@article{574c4649ddb5412eb62ae8b500d021e2,
title = "Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions",
abstract = "The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79 mM, 0.29 g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6 mM, 1.16 g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1 mM, 1.22 g/l) and this was higher than glycerol accumulation (9.46 mM, 0.87 g/l). The improved titer was over 4-fold higher than that of our previous study.",
author = "Yasutaka Hirokawa and Yuki Maki and Taizo Hanai",
year = "2017",
month = "1",
day = "1",
doi = "10.1016/j.ymben.2016.12.001",
language = "English",
volume = "39",
pages = "192--199",
journal = "Metabolic Engineering",
issn = "1096-7176",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions

AU - Hirokawa, Yasutaka

AU - Maki, Yuki

AU - Hanai, Taizo

PY - 2017/1/1

Y1 - 2017/1/1

N2 - The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79 mM, 0.29 g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6 mM, 1.16 g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1 mM, 1.22 g/l) and this was higher than glycerol accumulation (9.46 mM, 0.87 g/l). The improved titer was over 4-fold higher than that of our previous study.

AB - The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79 mM, 0.29 g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6 mM, 1.16 g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1 mM, 1.22 g/l) and this was higher than glycerol accumulation (9.46 mM, 0.87 g/l). The improved titer was over 4-fold higher than that of our previous study.

UR - http://www.scopus.com/inward/record.url?scp=85008219283&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008219283&partnerID=8YFLogxK

U2 - 10.1016/j.ymben.2016.12.001

DO - 10.1016/j.ymben.2016.12.001

M3 - Article

C2 - 27998670

AN - SCOPUS:85008219283

VL - 39

SP - 192

EP - 199

JO - Metabolic Engineering

JF - Metabolic Engineering

SN - 1096-7176

ER -