Improvement of sinter productivity by control of magnetite ore segregation in sintering bed

Yuji Iwami, Tetsuya Yamamoto, Nobuyuki Oyama, Hidetoshi Matsuno, Noritaka Saito, Kunihiko Nakashima

Research output: Contribution to journalArticle

Abstract

Recently, the quality of sinter feed ore used in sintering process has deteriorated. In particular, T.Fe has decreased and gangue component has increased in the sinter feed ore. Increase of gangue is not only the factor to influence sinter qualities, but also the factor to increase coke ratio in the blast furnace operation as the increase of slag ratio. Therefore, to cope with the deterioration of iron ore qualities, studies on alternative iron ore resources and development of its utilization technology have been required. In that kind of new iron ore resources, authors focus on high grade magnetite fine. In the past, there are some studies about the effect of mixing ratio and size of magnetite fine on productivity and quality, but there are few studies about magnetite fine segregation in charging. In addition, magnetite fine decreases sinter productivity by the decrease of permeability of sintering bed. A new study for using large amount of magnetite fine is required. In this research, the control method of magnetite fine segregation by magnetic force at charging and the improvement of sinter productivity by this method was studied. The effect of upper segregation of magnetite fine was studied through the analysis of melting behavior and interfacial reaction of calcium ferrite melts into hematite substrate and magnetite substrate.

Original languageEnglish
Pages (from-to)2200-2209
Number of pages10
Journalisij international
Volume58
Issue number12
DOIs
Publication statusPublished - Dec 1 2018

Fingerprint

Ore sinter
Ferrosoferric Oxide
Magnetite
Ores
Sintering
Productivity
Iron ores
Hematite
Substrates
Blast furnaces
Surface chemistry
Coke
Slags
Ferrite
Deterioration
Calcium
Melting

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Cite this

Improvement of sinter productivity by control of magnetite ore segregation in sintering bed. / Iwami, Yuji; Yamamoto, Tetsuya; Oyama, Nobuyuki; Matsuno, Hidetoshi; Saito, Noritaka; Nakashima, Kunihiko.

In: isij international, Vol. 58, No. 12, 01.12.2018, p. 2200-2209.

Research output: Contribution to journalArticle

Iwami, Yuji ; Yamamoto, Tetsuya ; Oyama, Nobuyuki ; Matsuno, Hidetoshi ; Saito, Noritaka ; Nakashima, Kunihiko. / Improvement of sinter productivity by control of magnetite ore segregation in sintering bed. In: isij international. 2018 ; Vol. 58, No. 12. pp. 2200-2209.
@article{0abd623388054bf58e5e03070e7c710a,
title = "Improvement of sinter productivity by control of magnetite ore segregation in sintering bed",
abstract = "Recently, the quality of sinter feed ore used in sintering process has deteriorated. In particular, T.Fe has decreased and gangue component has increased in the sinter feed ore. Increase of gangue is not only the factor to influence sinter qualities, but also the factor to increase coke ratio in the blast furnace operation as the increase of slag ratio. Therefore, to cope with the deterioration of iron ore qualities, studies on alternative iron ore resources and development of its utilization technology have been required. In that kind of new iron ore resources, authors focus on high grade magnetite fine. In the past, there are some studies about the effect of mixing ratio and size of magnetite fine on productivity and quality, but there are few studies about magnetite fine segregation in charging. In addition, magnetite fine decreases sinter productivity by the decrease of permeability of sintering bed. A new study for using large amount of magnetite fine is required. In this research, the control method of magnetite fine segregation by magnetic force at charging and the improvement of sinter productivity by this method was studied. The effect of upper segregation of magnetite fine was studied through the analysis of melting behavior and interfacial reaction of calcium ferrite melts into hematite substrate and magnetite substrate.",
author = "Yuji Iwami and Tetsuya Yamamoto and Nobuyuki Oyama and Hidetoshi Matsuno and Noritaka Saito and Kunihiko Nakashima",
year = "2018",
month = "12",
day = "1",
doi = "10.2355/isijinternational.ISIJINT-2017-691",
language = "English",
volume = "58",
pages = "2200--2209",
journal = "ISIJ International",
issn = "0915-1559",
publisher = "Iron and Steel Institute of Japan",
number = "12",

}

TY - JOUR

T1 - Improvement of sinter productivity by control of magnetite ore segregation in sintering bed

AU - Iwami, Yuji

AU - Yamamoto, Tetsuya

AU - Oyama, Nobuyuki

AU - Matsuno, Hidetoshi

AU - Saito, Noritaka

AU - Nakashima, Kunihiko

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Recently, the quality of sinter feed ore used in sintering process has deteriorated. In particular, T.Fe has decreased and gangue component has increased in the sinter feed ore. Increase of gangue is not only the factor to influence sinter qualities, but also the factor to increase coke ratio in the blast furnace operation as the increase of slag ratio. Therefore, to cope with the deterioration of iron ore qualities, studies on alternative iron ore resources and development of its utilization technology have been required. In that kind of new iron ore resources, authors focus on high grade magnetite fine. In the past, there are some studies about the effect of mixing ratio and size of magnetite fine on productivity and quality, but there are few studies about magnetite fine segregation in charging. In addition, magnetite fine decreases sinter productivity by the decrease of permeability of sintering bed. A new study for using large amount of magnetite fine is required. In this research, the control method of magnetite fine segregation by magnetic force at charging and the improvement of sinter productivity by this method was studied. The effect of upper segregation of magnetite fine was studied through the analysis of melting behavior and interfacial reaction of calcium ferrite melts into hematite substrate and magnetite substrate.

AB - Recently, the quality of sinter feed ore used in sintering process has deteriorated. In particular, T.Fe has decreased and gangue component has increased in the sinter feed ore. Increase of gangue is not only the factor to influence sinter qualities, but also the factor to increase coke ratio in the blast furnace operation as the increase of slag ratio. Therefore, to cope with the deterioration of iron ore qualities, studies on alternative iron ore resources and development of its utilization technology have been required. In that kind of new iron ore resources, authors focus on high grade magnetite fine. In the past, there are some studies about the effect of mixing ratio and size of magnetite fine on productivity and quality, but there are few studies about magnetite fine segregation in charging. In addition, magnetite fine decreases sinter productivity by the decrease of permeability of sintering bed. A new study for using large amount of magnetite fine is required. In this research, the control method of magnetite fine segregation by magnetic force at charging and the improvement of sinter productivity by this method was studied. The effect of upper segregation of magnetite fine was studied through the analysis of melting behavior and interfacial reaction of calcium ferrite melts into hematite substrate and magnetite substrate.

UR - http://www.scopus.com/inward/record.url?scp=85058941579&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058941579&partnerID=8YFLogxK

U2 - 10.2355/isijinternational.ISIJINT-2017-691

DO - 10.2355/isijinternational.ISIJINT-2017-691

M3 - Article

VL - 58

SP - 2200

EP - 2209

JO - ISIJ International

JF - ISIJ International

SN - 0915-1559

IS - 12

ER -