In situ label-free imaging for visualizing the biotransformation of a bioactive polyphenol

Yoon Hee Kim, Yoshinori Fujimura, Takatoki Hagihara, Masako Sasaki, Daichi Yukihira, Tatsuhiko Nagao, Daisuke Miura, Shinichi Yamaguchi, Kazunori Saito, Hiroshi Tanaka, Hiroyuki Wariishi, Koji Yamada, Hirofumi Tachibana

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Although understanding the high-resolution spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmacological effects, there has been no analytical technique that can easily detect the naïve molecular localization in mammalian tissues. We herein present a novel in situ label-free imaging technique for visualizing bioactive small molecules, using a polyphenol. We established a 1,5-diaminonaphthalene (1,5-DAN)-based matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) technique for visualizing epigallocatechin-3-O-gallate (EGCG), the major bioactive green tea polyphenol, within mammalian tissue micro-regions after oral dosing. Furthermore, the combination of this label-free MALDI-MSI method and a standard-independent metabolite identification method, an isotopic fine structure analysis using ultrahigh-resolution mass spectrometer, allows for the visualization of spatially-resolved biotransformation based on simultaneous mapping of EGCG and its phase II metabolites. Although this approach has limitations of the detection sensitivity, it will overcome the drawbacks associated with conventional molecular imaging techniques, and could contribute to biological discovery.

Original languageEnglish
Article number2805
JournalScientific reports
Volume3
DOIs
Publication statusPublished - Oct 14 2013

    Fingerprint

All Science Journal Classification (ASJC) codes

  • General

Cite this