TY - JOUR
T1 - Increase in processing flue gas flow rate while maintaining the fluidization state and filtration performance in a low-temperature continuous regeneration filter using a fluidized bed
AU - Yokoo, Kento
AU - Yamazaki, Tomoyuki
AU - Kishida, Masahiro
AU - Yamamoto, Tsuyoshi
N1 - Funding Information:
This study was partially supported by the Environment Research and Technology Development Fund JPMEERF20191007 of the Environmental Restoration and Conservation Agency of Japan.
Publisher Copyright:
© 2022 Society of Powder Technology Japan
PY - 2022/3
Y1 - 2022/3
N2 - To increase the processing gas flow rate in a fluidized bed filter, the effects of superficial velocity and fluidization state on PM filtration and combustion were examined by experiments using large bed particles (710 μm). The fluidization state at 710 μm was measured by image analysis and recurrence plot, and the superficial velocities as experimental conditions were determined to obtain almost the same fluidization state and filtration efficiency as those for small bed particles (420 μm) in previous studies. The BET-surface area of 710 μm is slightly larger than that of 420 μm, and the amount of potassium catalyst doped on large bed particles is comparable to that at 420 μm. The gas phase velocity is increased by increasing the processing gas flow rate, and the contact probability between PM and oxidizer increases. The PM combustion reaction is significantly promoted owing to the effects of the potassium catalyst and the increase in the gas phase velocity, and the minimum continuous regeneration temperature is 30 °C lower than that at 420 μm. As a result, fluidized bed filters using large bed particles can be operated in continuous regeneration mode at a bed temperature of 320 °C while maintaining a filtration efficiency of 100%.
AB - To increase the processing gas flow rate in a fluidized bed filter, the effects of superficial velocity and fluidization state on PM filtration and combustion were examined by experiments using large bed particles (710 μm). The fluidization state at 710 μm was measured by image analysis and recurrence plot, and the superficial velocities as experimental conditions were determined to obtain almost the same fluidization state and filtration efficiency as those for small bed particles (420 μm) in previous studies. The BET-surface area of 710 μm is slightly larger than that of 420 μm, and the amount of potassium catalyst doped on large bed particles is comparable to that at 420 μm. The gas phase velocity is increased by increasing the processing gas flow rate, and the contact probability between PM and oxidizer increases. The PM combustion reaction is significantly promoted owing to the effects of the potassium catalyst and the increase in the gas phase velocity, and the minimum continuous regeneration temperature is 30 °C lower than that at 420 μm. As a result, fluidized bed filters using large bed particles can be operated in continuous regeneration mode at a bed temperature of 320 °C while maintaining a filtration efficiency of 100%.
UR - http://www.scopus.com/inward/record.url?scp=85125479957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125479957&partnerID=8YFLogxK
U2 - 10.1016/j.apt.2022.103508
DO - 10.1016/j.apt.2022.103508
M3 - Article
AN - SCOPUS:85125479957
VL - 33
JO - Advanced Powder Technology
JF - Advanced Powder Technology
SN - 0921-8831
IS - 3
M1 - 103508
ER -