Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death

Takashi Kadono, Daniel Tran, Rafik Errakhi, Takuya Hiramatsu, Patrice Meimoun, Joël Briand, Mari Iwaya-Inoue, Tomonori Kawano, François Bouteau

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Background: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. Principal Findings: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O3, Ca2+ influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O3; namely, H2O2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. Significance: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

Original languageEnglish
Article numbere13373
JournalPloS one
Volume5
Issue number10
DOIs
Publication statusPublished - Oct 13 2010

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death'. Together they form a unique fingerprint.

  • Cite this

    Kadono, T., Tran, D., Errakhi, R., Hiramatsu, T., Meimoun, P., Briand, J., Iwaya-Inoue, M., Kawano, T., & Bouteau, F. (2010). Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PloS one, 5(10), [e13373]. https://doi.org/10.1371/journal.pone.0013373