Inferring strings from suffix trees and links on a binary alphabet

Tomohiro I, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

A suffix tree, which provides us with a linear space full-text index of a given string, is a fundamental data structure for string processing and information retrieval. In this paper we consider the reverse engineering problem on suffix trees: given an unlabeled ordered rooted tree T accompanied with a node-to-node transition function f, infer a string whose suffix tree and its suffix links for inner nodes are isomorphic to T and f, respectively. Also, we consider the enumeration problem in which we enumerate all strings corresponding to an input tree and links. By introducing new characterizations of suffix trees, we show that the reverse engineering problem and the enumeration problem on suffix trees on a binary alphabet can be solved in optimal time.

Original languageEnglish
Pages (from-to)316-325
Number of pages10
JournalDiscrete Applied Mathematics
Volume163
Issue numberPART 3
DOIs
Publication statusPublished - Jan 30 2014

All Science Journal Classification (ASJC) codes

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Inferring strings from suffix trees and links on a binary alphabet'. Together they form a unique fingerprint.

Cite this