Abstract
We study the influence of density-dependent symmetry energy at high densities in simulations of core-collapse supernovae, black hole formation, and proto-neutron star cooling by extending the relativistic mean field (RMF) theory used for the Shen equation-of-state (EOS) table. We adopt the extended RMF theory to examine the density dependence of the symmetry energy with a small value of the slope parameter L, while the original properties of the symmetric nuclear matter are unchanged. In order to assess matter effects at high densities, we perform numerical simulations of gravitational collapse of massive stars adopting the EOS table at high densities beyond 1014 g cm-3 with the small L value, which is in accord with the experimental and observational constraints, and compare them with the results obtained by using the Shen EOS. Numerical results for 11.2 and 15 M o stars exhibit minor effects around the core bounce and in the following evolution for 200 ms. Numerical results for 40 and 50 M o stars reveal a shorter duration toward the black hole formation with a smaller maximum mass for the small-L case. Numerical simulations of proto-neutron star cooling over 10 s through neutrino emissions demonstrate increasing effects of the symmetry energy at high densities. Neutrino cooling drastically proceeds in a relatively long timescale with high luminosities and average energies with the small symmetry energy. Evolution toward the cold neutron star is affected because of the different behavior of neutron-rich matter, while supernova dynamics around core bounce remains similar in less neutron-rich environments.
Original language | English |
---|---|
Article number | 110 |
Journal | Astrophysical Journal |
Volume | 887 |
Issue number | 2 |
DOIs | |
Publication status | Published - Dec 20 2019 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Influence of Density Dependence of Symmetry Energy in Hot and Dense Matter for Supernova Simulations'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Influence of Density Dependence of Symmetry Energy in Hot and Dense Matter for Supernova Simulations. / Sumiyoshi, Kohsuke; Nakazato, Ken'Ichiro; Suzuki, Hideyuki et al.
In: Astrophysical Journal, Vol. 887, No. 2, 110, 20.12.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Influence of Density Dependence of Symmetry Energy in Hot and Dense Matter for Supernova Simulations
AU - Sumiyoshi, Kohsuke
AU - Nakazato, Ken'Ichiro
AU - Suzuki, Hideyuki
AU - Hu, Jinniu
AU - Shen, Hong
N1 - Funding Information: Kohsuke Sumiyoshi Ken’ichiro Nakazato Hideyuki Suzuki Jinniu Hu Hong Shen Kohsuke Sumiyoshi Ken’ichiro Nakazato Hideyuki Suzuki Jinniu Hu Hong Shen National Institute of Technology, Numazu College, Shizuoka 410-8501, Japan Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan School of Physics, Nankai University, Tianjin 300071, People’s Republic of China Kohsuke Sumiyoshi, Ken’ichiro Nakazato, Hideyuki Suzuki, Jinniu Hu and Hong Shen 2019-12-20 2019-12-16 14:15:02 cgi/release: Article released bin/incoming: New from .zip yes We study the influence of density-dependent symmetry energy at high densities in simulations of core-collapse supernovae, black hole formation, and proto–neutron star cooling by extending the relativistic mean field (RMF) theory used for the Shen equation-of-state (EOS) table. We adopt the extended RMF theory to examine the density dependence of the symmetry energy with a small value of the slope parameter L , while the original properties of the symmetric nuclear matter are unchanged. In order to assess matter effects at high densities, we perform numerical simulations of gravitational collapse of massive stars adopting the EOS table at high densities beyond 10 14 g cm −3 with the small L value, which is in accord with the experimental and observational constraints, and compare them with the results obtained by using the Shen EOS. Numerical results for 11.2 and 15 M ⊙ stars exhibit minor effects around the core bounce and in the following evolution for 200 ms. Numerical results for 40 and 50 M ⊙ stars reveal a shorter duration toward the black hole formation with a smaller maximum mass for the small- L case. Numerical simulations of proto–neutron star cooling over 10 s through neutrino emissions demonstrate increasing effects of the symmetry energy at high densities. Neutrino cooling drastically proceeds in a relatively long timescale with high luminosities and average energies with the small symmetry energy. Evolution toward the cold neutron star is affected because of the different behavior of neutron-rich matter, while supernova dynamics around core bounce remains similar in less neutron-rich environments. � 2019. The American Astronomical Society. All rights reserved. Abbott B. P., Abbott R., Abbott T. D. et al 2018 PhRvL 121 161101 10.1103/PhysRevLett.121.161101 Abbott B. P., Abbott R., Abbott T. D. et al PhRvL 121 161101 2018 Antoniadis J., Freire P. C. C., Wex N. et al 2013 Sci 340 448 10.1126/science.1233232 Antoniadis J., Freire P. C. C., Wex N. et al Sci 340 2013 448 Baldo M. and Burgio G. F. 2016 PrPNP 91 203 10.1016/j.ppnp.2016.06.006 Baldo M. and Burgio G. F. PrPNP 91 2016 203 Bao S. S., Hu J. N., Zhang Z. W. and Shen H. 2014 PhRvC 90 045802 10.1103/PhysRevC.90.045802 Bao S. S., Hu J. N., Zhang Z. W. and Shen H. PhRvC 90 045802 2014 Bao S. S. and Shen H. 2014 PhRvC 89 045807 10.1103/PhysRevC.89.045807 Bao S. S. and Shen H. PhRvC 89 045807 2014 Bao S. S. and Shen H. 2015 PhRvC 91 015807 10.1103/PhysRevC.91.015807 Bao S. S. and Shen H. PhRvC 91 015807 2015 Baron E., Cooperstein J. and Kahana S. 1985 PhRvL 55 126 10.1103/PhysRevLett.55.126 Baron E., Cooperstein J. and Kahana S. PhRvL 55 1985 126 Bethe H. A. 1990 RvMP 62 801 10.1103/RevModPhys.62.801 Bethe H. A. RvMP 62 1990 801 Bethe H. A., Brown G. E., Applegate J. and Lattimer J. M. 1979 NuPhA 324 487 10.1016/0375-9474(79)90596-7 Bethe H. A., Brown G. E., Applegate J. and Lattimer J. M. NuPhA 324 1979 487 Bethe H. A. and Wilson J. R. 1985 ApJ 295 14 10.1086/163343 Bethe H. A. and Wilson J. R. ApJ 295 1985 14 Brockmann R. and Machleidt R. 1990 PhRvC 42 1965 10.1103/PhysRevC.42.1965 Brockmann R. and Machleidt R. PhRvC 42 1990 1965 Bruenn S. W. 1985 ApJS 58 771 10.1086/191056 Bruenn S. W. ApJS 0067-0049 58 1985 771 Bruenn S. W. 1989 ApJ 340 955 10.1086/167450 Bruenn S. W. ApJ 340 1989 955 Burrows A. 2013 RvMP 85 245 10.1103/RevModPhys.85.245 Burrows A. RvMP 85 2013 245 Couch S. M. 2013 ApJ 765 29 10.1088/0004-637X/765/1/29 Couch S. M. ApJ 0004-637X 765 1 29 2013 29 Fattoyev F. J., Horowitz C. J., Piekarewicz J. and Shen G. 2010 PhRvC 82 055803 10.1103/PhysRevC.82.055803 Fattoyev F. J., Horowitz C. J., Piekarewicz J. and Shen G. PhRvC 82 055803 2010 Fischer T., Bastian N.-U., Blaschke D. et al 2017 PASA 34 e067 10.1017/pasa.2017.63 Fischer T., Bastian N.-U., Blaschke D. et al PASA 1323-3580 34 2017 e067 Fischer T., Bastian N.-U. F., Wu M.-R. et al 2018 NatAs 2 980 10.1038/s41550-018-0583-0 Fischer T., Bastian N.-U. F., Wu M.-R. et al NatAs 2 2018 980 Fischer T., Hempel M., Sagert I., Suwa Y. and Schaffner-Bielich J. 2014 EPJA 50 46 10.1140/epja/i2014-14046-5 Fischer T., Hempel M., Sagert I., Suwa Y. and Schaffner-Bielich J. EPJA 50 2014 46 Fischer T., Martínez-Pinedo G., Hempel M. et al 2016 EPJWC 109 06002 10.1051/epjconf/201610906002 Fischer T., Martínez-Pinedo G., Hempel M. et al EPJWC 109 2016 06002 Fischer T., Sagert I., Pagliara G. et al 2011 ApJS 194 39 10.1088/0067-0049/194/2/39 Fischer T., Sagert I., Pagliara G. et al ApJS 0067-0049 194 2 39 2011 39 Fortin M., Zdunik J. L., Haensel P. and Bejger M. 2015 A&A 576 A68 10.1051/0004-6361/201424800 Fortin M., Zdunik J. L., Haensel P. and Bejger M. A&A 0004-6361 576 2015 A68 Furusawa S., Nagakura H., Sumiyoshi K. and Yamada S. 2013a ApJ 774 78 10.1088/0004-637X/774/1/78 Furusawa S., Nagakura H., Sumiyoshi K. and Yamada S. ApJ 0004-637X 774 1 78 2013 78 Furusawa S., Sumiyoshi K., Yamada S. and Suzuki H. 2013b ApJ 772 95 10.1088/0004-637X/772/2/95 Furusawa S., Sumiyoshi K., Yamada S. and Suzuki H. ApJ 0004-637X 772 2 95 2013 95 Furusawa S., Sumiyoshi K., Yamada S. and Suzuki H. 2017a NuPhA 957 188 10.1016/j.nuclphysa.2016.09.002 Furusawa S., Sumiyoshi K., Yamada S. and Suzuki H. NuPhA 957 2017 188 Furusawa S., Togashi H., Nagakura H. et al 2017b JPhG 44 094001 10.1088/1361-6471/aa7f35 Furusawa S., Togashi H., Nagakura H. et al JPhG 0954-3899 44 9 094001 2017 Furusawa S., Togashi H., Sumiyoshi K. et al 2019 PTEP in press Furusawa S., Togashi H., Sumiyoshi K. et al PTEP 2019 Furusawa S., Yamada S., Sumiyoshi K. and Suzuki H. 2011 ApJ 738 178 10.1088/0004-637X/738/2/178 Furusawa S., Yamada S., Sumiyoshi K. and Suzuki H. ApJ 0004-637X 738 2 178 2011 178 Gandolfi S., Gezerlis A. and Carlson J. 2015 ARNPS 65 303 10.1146/annurev-nucl-102014-021957 Gandolfi S., Gezerlis A. and Carlson J. ARNPS 65 2015 303 Hempel M., Fischer T., Schaffner-Bielich J. and Liebendörfer M. 2012 ApJ 748 70 10.1088/0004-637X/748/1/70 Hempel M., Fischer T., Schaffner-Bielich J. and Liebendörfer M. ApJ 0004-637X 748 1 70 2012 70 Hempel M. and Schaffner-Bielich J. 2010 NuPhA 837 210 10.1016/j.nuclphysa.2010.02.010 Hempel M. and Schaffner-Bielich J. NuPhA 837 2010 210 Hillebrandt W., Nomoto K. and Wolff R. G. 1984 A&A 133 175 Hillebrandt W., Nomoto K. and Wolff R. G. A&A 0004-6361 133 1984 175 Horiuchi S., Sumiyoshi K., Nakamura K. et al 2018 MNRAS 475 1363 10.1093/mnras/stx3271 Horiuchi S., Sumiyoshi K., Nakamura K. et al MNRAS 0035-8711 475 2018 1363 Hyper-Kamiokande Proto-Collaboration, Abe K. et al 2018 arXiv:1805.04163 Hyper-Kamiokande Proto-Collaboration, Abe K. et al 2018 Ishizuka C., Ohnishi A., Tsubakihara K., Sumiyoshi K. and Yamada S. 2008 JPhG 35 085201 10.1088/0954-3899/35/8/085201 Ishizuka C., Ohnishi A., Tsubakihara K., Sumiyoshi K. and Yamada S. JPhG 0954-3899 35 8 085201 2008 Janka H.-T. 2012 ARNPS 62 407 10.1146/annurev-nucl-102711-094901 Janka H.-T. ARNPS 62 2012 407 Janka H.-T. 2017 Handbook of Supernovae ed A. Alsabti and P. Murdin (Berlin: Springer) 1095 10.1007/978-3-319-21846-5_109 Janka H.-T. ed Alsabti A. and Murdin P. Handbook of Supernovae 2017 1095 Kotake K., Sumiyoshi K., Yamada S. et al 2012 PTEP 2012 01A301 10.1093/ptep/pts009 Kotake K., Sumiyoshi K., Yamada S. et al PTEP 2012 01A301 2012 Kotake K., Takiwaki T., Fischer T., Nakamura K. and Martínez-Pinedo G. 2018 ApJ 853 170 10.3847/1538-4357/aaa716 Kotake K., Takiwaki T., Fischer T., Nakamura K. and Martínez-Pinedo G. ApJ 0004-637X 853 2 170 2018 170 Lattimer J. M. and Swesty F. D. 1991 NuPhA 535 331 10.1016/0375-9474(91)90452-C Lattimer J. M. and Swesty F. D. NuPhA 535 1991 331 Lentz E. J., Mezzacappa A., Bronson Messer O. E., Hix W. R. and Bruenn S. W. 2012 ApJ 760 94 10.1088/0004-637X/760/1/94 Lentz E. J., Mezzacappa A., Bronson Messer O. E., Hix W. R. and Bruenn S. W. ApJ 0004-637X 760 1 94 2012 94 Li B.-A., Krastev P. G., Wen D.-H. and Zhang N.-B. 2019 EPJA 55 117 10.1140/epja/i2019-12780-8 Li B.-A., Krastev P. G., Wen D.-H. and Zhang N.-B. EPJA 55 2019 117 Liebendörfer M., Messer O. E. B., Mezzacappa A. et al 2004 ApJS 150 263 10.1086/380191 Liebendörfer M., Messer O. E. B., Mezzacappa A. et al ApJS 0067-0049 150 1 263 2004 263 Liebendörfer M., Mezzacappa A., Thielemann F. et al 2001 PhRvD 63 103004 10.1103/PhysRevD.63.103004 Liebendörfer M., Mezzacappa A., Thielemann F. et al PhRvD 63 103004 2001 Marek A., Janka H. T. and Müller E. 2009 A&A 496 475 10.1051/0004-6361/200810883 Marek A., Janka H. T. and Müller E. A&A 0004-6361 496 2009 475 Martínez-Pinedo G., Fischer T., Lohs A. and Huther L. 2012 PhRvL 109 251104 10.1103/PhysRevLett.109.251104 Martínez-Pinedo G., Fischer T., Lohs A. and Huther L. PhRvL 109 251104 2012 Nagakura H., Furusawa S., Togashi H. et al 2019 ApJS 240 38 10.3847/1538-4365/aafac9 Nagakura H., Furusawa S., Togashi H. et al ApJS 0067-0049 240 2 38 2019 38 Nagakura H., Iwakami W., Furusawa S. et al 2018 ApJ 854 136 10.3847/1538-4357/aaac29 Nagakura H., Iwakami W., Furusawa S. et al ApJ 0004-637X 854 2 136 2018 136 Nakazato K. 2013 PhRvD 88 083012 10.1103/PhysRevD.88.083012 Nakazato K. PhRvD 88 083012 2013 Nakazato K., Furusawa S., Sumiyoshi K. et al 2012 ApJ 745 197 10.1088/0004-637X/745/2/197 Nakazato K., Furusawa S., Sumiyoshi K. et al ApJ 0004-637X 745 2 197 2012 197 Nakazato K., Mochida E., Niino Y. and Suzuki H. 2015 ApJ 804 75 10.1088/0004-637X/804/1/75 Nakazato K., Mochida E., Niino Y. and Suzuki H. ApJ 0004-637X 804 1 75 2015 75 Nakazato K., Sumiyoshi K., Suzuki H. et al 2013a ApJS 205 2 10.1088/0067-0049/205/1/2 Nakazato K., Sumiyoshi K., Suzuki H. et al ApJS 0067-0049 205 1 2 2013 2 Nakazato K., Sumiyoshi K., Suzuki H. and Yamada S. 2010a PhRvD 81 083009 10.1103/PhysRevD.81.083009 Nakazato K., Sumiyoshi K., Suzuki H. and Yamada S. PhRvD 81 083009 2010 Nakazato K., Sumiyoshi K. and Yamada S. 2008 PhRvD 77 103006 10.1103/PhysRevD.77.103006 Nakazato K., Sumiyoshi K. and Yamada S. PhRvD 77 103006 2008 Nakazato K., Sumiyoshi K. and Yamada S. 2010b ApJ 721 1284 10.1088/0004-637X/721/2/1284 Nakazato K., Sumiyoshi K. and Yamada S. ApJ 0004-637X 721 2 1284 2010 1284 Nakazato K., Sumiyoshi K. and Yamada S. 2013b A&A 558 A50 10.1051/0004-6361/201322231 Nakazato K., Sumiyoshi K. and Yamada S. A&A 0004-6361 558 2013 A50 Nakazato K. and Suzuki H. 2019 ApJ 878 25 10.3847/1538-4357/ab1d4b Nakazato K. and Suzuki H. ApJ 0004-637X 878 1 25 2019 25 Nakazato K., Suzuki H. and Togashi H. 2018 PhRvC 97 035804 10.1103/PhysRevC.97.035804 Nakazato K., Suzuki H. and Togashi H. PhRvC 97 035804 2018 O’Connor E. and Ott C. D. 2011 ApJ 730 70 10.1088/0004-637X/730/2/70 O’Connor E. and Ott C. D. ApJ 0004-637X 730 2 70 2011 70 Oertel M., Hempel M., Klähn T. and Typel S. 2017 RvMP 89 015007 10.1103/RevModPhys.89.015007 Oertel M., Hempel M., Klähn T. and Typel S. RvMP 89 015007 2017 Pan K.-C., Liebendörfer M., Couch S. M. and Thielemann F.-K. 2018 ApJ 857 13 10.3847/1538-4357/aab71d Pan K.-C., Liebendörfer M., Couch S. M. and Thielemann F.-K. ApJ 0004-637X 857 1 13 2018 13 Pons J. A., Reddy S., Prakash M., Lattimer J. M. and Miralles J. A. 1999 ApJ 513 780 10.1086/306889 Pons J. A., Reddy S., Prakash M., Lattimer J. M. and Miralles J. A. ApJ 0004-637X 513 2 780 1999 780 Roberts L. F., Shen G., Cirigliano V. et al 2012 PhRvL 108 061103 10.1103/PhysRevLett.108.061103 Roberts L. F., Shen G., Cirigliano V. et al PhRvL 108 061103 2012 Schneider A. S., Constantinou C., Muccioli B. and Prakash M. 2019a PhRvC 100 025803 10.1103/PhysRevC.100.025803 Schneider A. S., Constantinou C., Muccioli B. and Prakash M. PhRvC 100 025803 2019 Schneider A. S., Roberts L. F. and Ott C. D. 2017 PhRvC 96 065802 10.1103/PhysRevC.96.065802 Schneider A. S., Roberts L. F. and Ott C. D. PhRvC 96 065802 2017 Schneider A. S., Roberts L. F., Ott C. D. and O’connor E. 2019b PhRvC 100 055802 10.1103/PhysRevC.100.055802 Schneider A. S., Roberts L. F., Ott C. D. and O’connor E. PhRvC 100 055802 2019 Serot B. D. and Walecka J. D. 1986 Advances in Nuclear Physics Vol. 16 ed J. W. Negele and E. Vogt (New York: Plenum) 1 Serot B. D. and Walecka J. D. ed Negele J. W. and Vogt E. Advances in Nuclear Physics 16 1986 1 Shen G., Horowitz C. J. and Teige S. 2011a PhRvC 83 035802 10.1103/PhysRevC.83.035802 Shen G., Horowitz C. J. and Teige S. PhRvC 83 035802 2011 Shen H., Sugahara Y. and Toki H. 1997 PhRvC 55 1211 10.1103/PhysRevC.55.1211 Shen H., Sugahara Y. and Toki H. PhRvC 55 1997 1211 Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. 1998a NuPhA 637 435 10.1016/S0375-9474(98)00236-X Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. NuPhA 637 1998 435 Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. 1998b PThPh 100 1013 10.1143/PTP.100.1013 Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. PThPh 100 1998 1013 Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. 2011b ApJS 197 20 10.1088/0067-0049/197/2/20 Shen H., Toki H., Oyamatsu K. and Sumiyoshi K. ApJS 0067-0049 197 2 20 2011 20 Steiner A. W., Hempel M. and Fischer T. 2013 ApJ 774 17 10.1088/0004-637X/774/1/17 Steiner A. W., Hempel M. and Fischer T. ApJ 0004-637X 774 1 17 2013 17 Sugahara Y. and Toki H. 1994 NuPhA 579 557 10.1016/0375-9474(94)90923-7 Sugahara Y. and Toki H. NuPhA 579 1994 557 Sumiyoshi K., Ishizuka C., Ohnishi A., Yamada S. and Suzuki H. 2009 ApJL 690 L43 10.1088/0004-637X/690/1/L43 Sumiyoshi K., Ishizuka C., Ohnishi A., Yamada S. and Suzuki H. ApJL 0004-637X 690 2009 L43 Sumiyoshi K., Kuwabara H. and Toki H. 1995a NuPhA 581 725 10.1016/0375-9474(94)00335-K Sumiyoshi K., Kuwabara H. and Toki H. NuPhA 581 1995 725 Sumiyoshi K., Oyamatsu K. and Toki H. 1995b NuPhA 595 327 10.1016/0375-9474(95)00388-5 Sumiyoshi K., Oyamatsu K. and Toki H. NuPhA 595 1995 327 Sumiyoshi K., Suzuki H. and Toki H. 1995 A&A 303 475 Sumiyoshi K., Suzuki H. and Toki H. A&A 0004-6361 303 1995 475 Sumiyoshi K., Suzuki H., Yamada S. and Toki H. 2004 NuPhA 730 227 10.1016/j.nuclphysa.2003.10.007 Sumiyoshi K., Suzuki H., Yamada S. and Toki H. NuPhA 730 2004 227 Sumiyoshi K. and Toki H. 1994 ApJ 422 700 10.1086/173763 Sumiyoshi K. and Toki H. ApJ 422 1994 700 Sumiyoshi K., Yamada S., Suzuki H. et al 2005 ApJ 629 922 10.1086/431788 Sumiyoshi K., Yamada S., Suzuki H. et al ApJ 0004-637X 629 2 922 2005 922 Sumiyoshi K., Yamada S. and Suzuki H. 2007 ApJ 667 382 10.1086/520876 Sumiyoshi K., Yamada S. and Suzuki H. ApJ 0004-637X 667 1 382 2007 382 Sumiyoshi K., Yamada S. and Suzuki H. 2008 ApJ 688 1176 10.1086/592183 Sumiyoshi K., Yamada S. and Suzuki H. ApJ 0004-637X 688 2 1176 2008 1176 Sumiyoshi K., Yamada S., Suzuki H. and Chiba S. 2006 PhRvL 97 091101 10.1103/PhysRevLett.97.091101 Sumiyoshi K., Yamada S., Suzuki H. and Chiba S. PhRvL 97 091101 2006 Suwa Y., Sumiyoshi K., Nakazato K. et al 2019 ApJ 881 139 10.3847/1538-4357/ab2e05 Suwa Y., Sumiyoshi K., Nakazato K. et al ApJ 0004-637X 881 2 139 2019 139 Suwa Y., Takiwaki T., Kotake K. et al 2013 ApJ 764 99 10.1088/0004-637X/764/1/99 Suwa Y., Takiwaki T., Kotake K. et al ApJ 0004-637X 764 1 99 2013 99 Suzuki H. 1993 Proc. Int. Symp. on Neutrino Astrophysics: Frontiers of Neutrino Astrophysics ed Y. Suzuki and K. Nakamura (Tokyo: Universal Academy Press) 219 Suzuki H. ed Suzuki Y. and Nakamura K. Proc. Int. Symp. on Neutrino Astrophysics: Frontiers of Neutrino Astrophysics 1993 219 Suzuki H. 1994 Physics and Astrophysics of Neutrinos ed M. Fukugita and A. Suzuki (Tokyo: Springer) 763 10.1007/978-4-431-67029-2_12 Suzuki H. ed Fukugita M. and Suzuki A. Physics and Astrophysics of Neutrinos 1994 763 Suzuki T., Geissel H., Bochkarev O. et al 1995 PhRvL 75 3241 10.1103/PhysRevLett.75.3241 Suzuki T., Geissel H., Bochkarev O. et al PhRvL 75 1995 3241 Swesty F. D., Lattimer J. M. and Myra E. S. 1994 ApJ 425 195 10.1086/173974 Swesty F. D., Lattimer J. M. and Myra E. S. ApJ 425 1994 195 Takahara M. and Sato K. 1988 ApJ 335 301 10.1086/166928 Takahara M. and Sato K. ApJ 335 1988 301 Takahashi K., Sumiyoshi K., Yamada S., Umeda H. and Yoshida T. 2019 ApJ 871 153 10.3847/1538-4357/aaf8a8 Takahashi K., Sumiyoshi K., Yamada S., Umeda H. and Yoshida T. ApJ 0004-637X 871 2 153 2019 153 Tamii A., von Neumann-Cosel P. and Poltoratska I. 2014 EPJA 50 28 10.1140/epja/i2014-14028-7 Tamii A., von Neumann-Cosel P. and Poltoratska I. EPJA 50 2014 28 Tews I., Lattimer J. M., Ohnishi A. and Kolomeitsev E. E. 2017 ApJ 848 105 10.3847/1538-4357/aa8db9 Tews I., Lattimer J. M., Ohnishi A. and Kolomeitsev E. E. ApJ 0004-637X 848 2 105 2017 105 Thompson T. A., Burrows A. and Pinto P. 2003 ApJ 592 434 10.1086/375701 Thompson T. A., Burrows A. and Pinto P. ApJ 0004-637X 592 1 434 2003 434 Togashi H., Nakazato K., Takehara Y. et al 2017 NuPhA 961 78 10.1016/j.nuclphysa.2017.02.010 Togashi H., Nakazato K., Takehara Y. et al NuPhA 961 2017 78 Togashi H., Takano M., Sumiyoshi K. and Nakazato K. 2014 PTEP 2014 023D05 10.1093/ptep/ptu020 Togashi H., Takano M., Sumiyoshi K. and Nakazato K. PTEP 2014 023D05 2014 Tominaga N., Umeda H. and Nomoto K. 2007 ApJ 660 516 10.1086/513063 Tominaga N., Umeda H. and Nomoto K. ApJ 0004-637X 660 1 516 2007 516 Woosley S. E., Heger A. and Weaver T. A. 2002 RvMP 74 1015 10.1103/RevModPhys.74.1015 Woosley S. E., Heger A. and Weaver T. A. RvMP 74 2002 1015 Woosley S. E. and Weaver T. 1995 ApJS 101 181 10.1086/192237 Woosley S. E. and Weaver T. ApJS 0067-0049 101 1995 181 Yasin H., Schäfer S., Arcones A. and Schwenk A. 2018 arXiv:1812.02002 Yasin H., Schäfer S., Arcones A. and Schwenk A. 2018 Yüksel H. and Kistler M. D. 2015 PhLB 751 413 10.1016/j.physletb.2015.10.055 Yüksel H. and Kistler M. D. PhLB 751 2015 413 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/12/20
Y1 - 2019/12/20
N2 - We study the influence of density-dependent symmetry energy at high densities in simulations of core-collapse supernovae, black hole formation, and proto-neutron star cooling by extending the relativistic mean field (RMF) theory used for the Shen equation-of-state (EOS) table. We adopt the extended RMF theory to examine the density dependence of the symmetry energy with a small value of the slope parameter L, while the original properties of the symmetric nuclear matter are unchanged. In order to assess matter effects at high densities, we perform numerical simulations of gravitational collapse of massive stars adopting the EOS table at high densities beyond 1014 g cm-3 with the small L value, which is in accord with the experimental and observational constraints, and compare them with the results obtained by using the Shen EOS. Numerical results for 11.2 and 15 M o stars exhibit minor effects around the core bounce and in the following evolution for 200 ms. Numerical results for 40 and 50 M o stars reveal a shorter duration toward the black hole formation with a smaller maximum mass for the small-L case. Numerical simulations of proto-neutron star cooling over 10 s through neutrino emissions demonstrate increasing effects of the symmetry energy at high densities. Neutrino cooling drastically proceeds in a relatively long timescale with high luminosities and average energies with the small symmetry energy. Evolution toward the cold neutron star is affected because of the different behavior of neutron-rich matter, while supernova dynamics around core bounce remains similar in less neutron-rich environments.
AB - We study the influence of density-dependent symmetry energy at high densities in simulations of core-collapse supernovae, black hole formation, and proto-neutron star cooling by extending the relativistic mean field (RMF) theory used for the Shen equation-of-state (EOS) table. We adopt the extended RMF theory to examine the density dependence of the symmetry energy with a small value of the slope parameter L, while the original properties of the symmetric nuclear matter are unchanged. In order to assess matter effects at high densities, we perform numerical simulations of gravitational collapse of massive stars adopting the EOS table at high densities beyond 1014 g cm-3 with the small L value, which is in accord with the experimental and observational constraints, and compare them with the results obtained by using the Shen EOS. Numerical results for 11.2 and 15 M o stars exhibit minor effects around the core bounce and in the following evolution for 200 ms. Numerical results for 40 and 50 M o stars reveal a shorter duration toward the black hole formation with a smaller maximum mass for the small-L case. Numerical simulations of proto-neutron star cooling over 10 s through neutrino emissions demonstrate increasing effects of the symmetry energy at high densities. Neutrino cooling drastically proceeds in a relatively long timescale with high luminosities and average energies with the small symmetry energy. Evolution toward the cold neutron star is affected because of the different behavior of neutron-rich matter, while supernova dynamics around core bounce remains similar in less neutron-rich environments.
UR - http://www.scopus.com/inward/record.url?scp=85077633711&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077633711&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab5443
DO - 10.3847/1538-4357/ab5443
M3 - Article
AN - SCOPUS:85077633711
VL - 887
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 2
M1 - 110
ER -