Influence of grain size on the density of deformation twins in Cu-30%Zn alloy

Y. Li, Y. H. Zhao, W. Liu, C. Xu, Z. Horita, X. Z. Liao, Y. T. Zhu, T. G. Langdon, E. J. Lavernia

    Research output: Contribution to journalArticlepeer-review

    40 Citations (Scopus)

    Abstract

    Mechanical properties of nanostructured (NS) materials are significantly affected by both grain size and twin density, and the twin density has a close relationship with the grain size. Therefore, it is fundamentally important to understand the influence of grain size on the density of deformation twins in NS materials. In this study, we selected Cu-30%Zn alloy as a model material to study this phenomenon, because it has low stacking fault energy of 7mJm-2 and twinning is its dominant deformation mechanism. High-pressure torsion (HPT), equal channel pressing (ECAP) and ECAP followed by rolling were used to achieve a wide range of grain size from about 3μm to 70nm. It is found that, with decreasing grain size, the average distance between deformation twins decreases gradually from 177nm to 24nm, while the density of deformation twins (the length of twin boundary in unit area) exhibit a maximum value at ECAP+95% rolling sample with average grain size of 110nm. Careful statistics analysis reveals two optimum grain size ranges 60-80nm and 40-50nm for maximum twin density values for ECAP+95% rolling and HPT Cu-30%Zn samples, respectively. The underlying mechanisms governing the influence of grain size on twinning is discussed.

    Original languageEnglish
    Pages (from-to)3942-3948
    Number of pages7
    JournalMaterials Science and Engineering A
    Volume527
    Issue number16-17
    DOIs
    Publication statusPublished - Jun 2010

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Influence of grain size on the density of deformation twins in Cu-30%Zn alloy'. Together they form a unique fingerprint.

    Cite this