Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage

Kazuhiro Nakashima, Yoshinori Sawae, T. Murakami

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Poly (vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. In our previous studies, wear of PVA hydrogel depended on content of proteins in lubricants. The secondary structures of bovine serum albumin (BSA) and human gamma globulin (HGG) were investigated in circular dichroism spectroscopy to clarify the influence of the proteins on frictional properties. BSA and HGG were mainly composed of the α-helix and the β-sheet, respectively. BSA containing the α-helix structure showed low friction compared to HGG composed of the β-sheet structure in mixed or boundary lubrication mode. The α-helix structure forms low shear layer because the α-helix structure is easily released from surfaces and low cohesive strength. HGG forms uniform adsorption layer, but showed higher friction than BSA in the rubbing with single protein. In the repeated rubbing with changing of lubricants from HGG to BSA, however, the final friction was reduced, because an optimum layered structure of proteins was formed. Hence, layered structure of proteins appears to play an important role to protect rubbing surfaces and to reduce friction. In heat treatment tests, heat-induced BSA showed very low friction because of reduction of the α-helix structure. Heat-induced HGG did not show large differences from native HGG, but could not bring low friction with heat-induced BSA. Thus it was shown that the protein conformation has effective influences on friction.

Original languageEnglish
Pages (from-to)145-151
Number of pages7
JournalTribology Letters
Volume26
Issue number2
DOIs
Publication statusPublished - May 1 2007

Fingerprint

gamma globulin
cartilage
Hydrogel
gamma-Globulins
Cartilage
Bovine Serum Albumin
albumins
Hydrogels
serums
Conformations
alcohols
Alcohols
friction
Friction
proteins
helices
Proteins
lubricants
Lubricants
high temperature tests

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Cite this

Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage. / Nakashima, Kazuhiro; Sawae, Yoshinori; Murakami, T.

In: Tribology Letters, Vol. 26, No. 2, 01.05.2007, p. 145-151.

Research output: Contribution to journalArticle

@article{0b9eb32138034b65a4b51e1707f78b88,
title = "Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage",
abstract = "Poly (vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. In our previous studies, wear of PVA hydrogel depended on content of proteins in lubricants. The secondary structures of bovine serum albumin (BSA) and human gamma globulin (HGG) were investigated in circular dichroism spectroscopy to clarify the influence of the proteins on frictional properties. BSA and HGG were mainly composed of the α-helix and the β-sheet, respectively. BSA containing the α-helix structure showed low friction compared to HGG composed of the β-sheet structure in mixed or boundary lubrication mode. The α-helix structure forms low shear layer because the α-helix structure is easily released from surfaces and low cohesive strength. HGG forms uniform adsorption layer, but showed higher friction than BSA in the rubbing with single protein. In the repeated rubbing with changing of lubricants from HGG to BSA, however, the final friction was reduced, because an optimum layered structure of proteins was formed. Hence, layered structure of proteins appears to play an important role to protect rubbing surfaces and to reduce friction. In heat treatment tests, heat-induced BSA showed very low friction because of reduction of the α-helix structure. Heat-induced HGG did not show large differences from native HGG, but could not bring low friction with heat-induced BSA. Thus it was shown that the protein conformation has effective influences on friction.",
author = "Kazuhiro Nakashima and Yoshinori Sawae and T. Murakami",
year = "2007",
month = "5",
day = "1",
doi = "10.1007/s11249-006-9185-6",
language = "English",
volume = "26",
pages = "145--151",
journal = "Tribology Letters",
issn = "1023-8883",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage

AU - Nakashima, Kazuhiro

AU - Sawae, Yoshinori

AU - Murakami, T.

PY - 2007/5/1

Y1 - 2007/5/1

N2 - Poly (vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. In our previous studies, wear of PVA hydrogel depended on content of proteins in lubricants. The secondary structures of bovine serum albumin (BSA) and human gamma globulin (HGG) were investigated in circular dichroism spectroscopy to clarify the influence of the proteins on frictional properties. BSA and HGG were mainly composed of the α-helix and the β-sheet, respectively. BSA containing the α-helix structure showed low friction compared to HGG composed of the β-sheet structure in mixed or boundary lubrication mode. The α-helix structure forms low shear layer because the α-helix structure is easily released from surfaces and low cohesive strength. HGG forms uniform adsorption layer, but showed higher friction than BSA in the rubbing with single protein. In the repeated rubbing with changing of lubricants from HGG to BSA, however, the final friction was reduced, because an optimum layered structure of proteins was formed. Hence, layered structure of proteins appears to play an important role to protect rubbing surfaces and to reduce friction. In heat treatment tests, heat-induced BSA showed very low friction because of reduction of the α-helix structure. Heat-induced HGG did not show large differences from native HGG, but could not bring low friction with heat-induced BSA. Thus it was shown that the protein conformation has effective influences on friction.

AB - Poly (vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. In our previous studies, wear of PVA hydrogel depended on content of proteins in lubricants. The secondary structures of bovine serum albumin (BSA) and human gamma globulin (HGG) were investigated in circular dichroism spectroscopy to clarify the influence of the proteins on frictional properties. BSA and HGG were mainly composed of the α-helix and the β-sheet, respectively. BSA containing the α-helix structure showed low friction compared to HGG composed of the β-sheet structure in mixed or boundary lubrication mode. The α-helix structure forms low shear layer because the α-helix structure is easily released from surfaces and low cohesive strength. HGG forms uniform adsorption layer, but showed higher friction than BSA in the rubbing with single protein. In the repeated rubbing with changing of lubricants from HGG to BSA, however, the final friction was reduced, because an optimum layered structure of proteins was formed. Hence, layered structure of proteins appears to play an important role to protect rubbing surfaces and to reduce friction. In heat treatment tests, heat-induced BSA showed very low friction because of reduction of the α-helix structure. Heat-induced HGG did not show large differences from native HGG, but could not bring low friction with heat-induced BSA. Thus it was shown that the protein conformation has effective influences on friction.

UR - http://www.scopus.com/inward/record.url?scp=33947131174&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33947131174&partnerID=8YFLogxK

U2 - 10.1007/s11249-006-9185-6

DO - 10.1007/s11249-006-9185-6

M3 - Article

AN - SCOPUS:33947131174

VL - 26

SP - 145

EP - 151

JO - Tribology Letters

JF - Tribology Letters

SN - 1023-8883

IS - 2

ER -