Influence of structure and pore pressure of plate interface on tectonic tremor in the Nankai subduction zone, Japan

Andri Hendriyana, Takeshi Tsuji

Research output: Contribution to journalArticlepeer-review

Abstract

Episodes of tectonic tremor are observed in the Nankai accretionary prism close to the trough axis; however, their non-impulsive signals and the distortion of seismic signals in the accretionary prism make it challenging to accurately estimate their locations. Reliable tremor locations would help to characterize geological conditions favourable for tremor generation and could offer insights into the up-dip limit of coseismic ruptures. Here we report a new approach to pinpoint tremor locations based on seismic phase polarization. The estimated epicentres of tremor distribution mostly coincide with low-velocity shear zone or thick underthrust sediments where high pore pressures are inferred, and the distribution of tremor appears to be controlled by characteristics of the shear zone. A tremor episode occurred a couple days after the off-Mie earthquake clearly shows migration at a velocity similar to that of very low frequency earthquakes. Migration of tremor initiated around the outer ridge where the estimated pore pressure is greatest. The spatio-temporal tremor distribution indicates that pore pressure relaxation could trigger the tremor migration. The occurrence of tremor thus may indicate a weak shallow plate interface that is prone to slip following large earthquakes. Based on the information of tremor migration, the permeability along the fault can be estimated as 3.7×10−12 m2.

Original languageEnglish
Article number116742
JournalEarth and Planetary Science Letters
Volume558
DOIs
Publication statusPublished - Mar 15 2021

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Influence of structure and pore pressure of plate interface on tectonic tremor in the Nankai subduction zone, Japan'. Together they form a unique fingerprint.

Cite this