Input current-ripple reduction methods for pulse-link DC-AC converter for fuel cells

Kentaro Fukushima, Masahito Shoyama, Isami Norigoe, Tamotsu Ninomiya, Yosuke Harada, Kenta Tsukakoshi

Research output: Contribution to journalArticle

Abstract

This paper analyzes the steady-state characteristics of pulse-link DC-AC converters applying input current-ripple reduction methods in fuel cell applications. In that kind of applications, small input current-ripple is essential. This limitation is caused by the fuel-cell chemical reaction time. Excessive and pulsed current drawn from the fuel-cell may result in less life-time or damage. In order to reduce the input current-ripple, conventional DC-AC converters for fuel-cell applications normally have large smoothing capacitor placed between boost converter stage and PWM converter stage. However, this capacitor consumes additional space, weight, and cost. A novel topology called pulse-link DC-AC converter is proposed in order to solve the abovementioned issue. This new topology does not require large capacitor value to minimize the input current-ripple. Instead, it uses series-LC circuit placed in parallel between two connected stages. The mechanism of current-ripple reduction is presented. Experimental results showing input current ripple as small as 0.3 A with only small inductance and capacitance value is also demonstrated.

Original languageEnglish
Pages (from-to)7-12
Number of pages6
JournalResearch Reports on Information Science and Electrical Engineering of Kyushu University
Volume14
Issue number1
Publication statusPublished - Mar 1 2009

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Input current-ripple reduction methods for pulse-link DC-AC converter for fuel cells'. Together they form a unique fingerprint.

  • Cite this