TY - JOUR
T1 - Interaction of local elastoplasticity with hydrogen
T2 - Embrittlement effects
AU - Sofronis, P.
AU - Lufrano, J.
N1 - Funding Information:
This work was supported by the Department of Energy under grant DEFGO2-91ER45439.
PY - 1999/2
Y1 - 1999/2
N2 - The finite element method was used to solve the coupled elastic-plastic boundary value problem and transient hydrogen diffusion initial boundary value problem. Solutions were obtained at room temperature and under plane strain deformation in the neighborhood of a blunting crack tip under small scale yielding conditions and in the neighborhood of a rounded notch in a 4-point bend specimen. A discussion of the finite element results in conjunction with different mechanisms of hydrogen embrittlement is presented. If a critical amount of hydrogen is required for hydrogen induced crack initiation, the present results predict locations of crack initiation sites at steel bend specimens which are in agreement with experimental observations on the occurrence of the first microcracking event.
AB - The finite element method was used to solve the coupled elastic-plastic boundary value problem and transient hydrogen diffusion initial boundary value problem. Solutions were obtained at room temperature and under plane strain deformation in the neighborhood of a blunting crack tip under small scale yielding conditions and in the neighborhood of a rounded notch in a 4-point bend specimen. A discussion of the finite element results in conjunction with different mechanisms of hydrogen embrittlement is presented. If a critical amount of hydrogen is required for hydrogen induced crack initiation, the present results predict locations of crack initiation sites at steel bend specimens which are in agreement with experimental observations on the occurrence of the first microcracking event.
UR - http://www.scopus.com/inward/record.url?scp=0033078799&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033078799&partnerID=8YFLogxK
U2 - 10.1016/s0921-5093(98)00982-4
DO - 10.1016/s0921-5093(98)00982-4
M3 - Article
AN - SCOPUS:0033078799
SN - 0921-5093
VL - 260
SP - 41
EP - 47
JO - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
JF - Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing
IS - 1-2
ER -