Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes

Yohko Gotoh, Toshimasa Yamazaki, Yasuyuki Ishizuka, Hirohiko Ise

Research output: Contribution to journalArticlepeer-review

Abstract

We have reported that cytoskeletal proteins such as desmin and vimentin are expressed on the surface of muscle, mesenchymal and cancer cells, and possess N-acetyl-β-D-glucosamine (β-GlcNAc) residue-binding properties. As cell-recognizable β-GlcNAc residue-bearing biopolymer, we prepared glycoconjugates (SF-GlcNAc) composed of silk fibroin (SF) and monosaccharide N-acetyl-D-glucosamine (GlcNAc) by chemical modification using cyanuric chloride. The covalent immobilization of GlcNAc into SF was assessed by 1H-NMR measurements. The 1H-NMR spectrum of SF-GlcNAc conjugates showed new peaks attributed to the methyl protons of the N-acetyl group in GlcNAc, and the integration of these peaks revealed that the GlcNAc content in the conjugates was 9 wt%. The existence of β-GlcNAc residues in SF-GlcNAc was examined by the criteria using lectins such as wheat germ agglutinin (WGA). Addition of WGA to SF-GlcNAc solution caused an increase in the turbidity of the solution due to lectin-mediated aggregation. Solid-phase lectin binding assay based on the biotin-avidin interaction showed that biotinylated succinylated WGA bound more strongly onto SF-GlcNAc conjugate-coated wells compared to SF-coated well. Following the establishment of the existence of β-GlcNAc residues in SF-GlcNAc, the interaction of SF-GlcNAc with desmin was examined by enzyme-linked immunosorbent assay using anti-desmin antibody. The stronger binding of desmin was observed for SF-GlcNAc conjugate-coated wells compared to SF-coated wells. The use of SF-GlcNAc conjugates as a substrate for culturing desmin-expressing human cardiac myocytes demonstrated an increase in the numbers of attached cells and proliferating cells on the conjugate-coated wells compared to SF-coated wells. These results suggest that the immobilization of monosaccharide GlcNAc is a useful method for the versatile functionalization of SF as an application in tissue engineering.

Original languageEnglish
Article number111406
JournalColloids and Surfaces B: Biointerfaces
Volume198
DOIs
Publication statusPublished - Feb 2021

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes'. Together they form a unique fingerprint.

Cite this