Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells

Eijiro Jimi, Ichiro Nakamura, Le T. Duong, Tetsuro Ikebe, Naoyuki Takahashi, Gideon A. Rodan, Tatsuo Suda

Research output: Contribution to journalArticlepeer-review

277 Citations (Scopus)

Abstract

Interleukin-1 (IL-1) is one of the most potent bone-resorbing factors involved in bone loss associated with inflammation. We previously reported that IL-1 prolonged the survival of multinucleated osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts/stromal cells and bone marrow cells via the prevention of spontaneously occurring apoptosis. It was reported that macrophage colony-stimulating factor (M-CSF/CSF-1) prolongs the survival of OCLs without the help of osteoblasts/stromal cells. The present study was conducted to determine whether IL-1 also directly induces the multinucleation and activation of OCLs. Mononuclear osteoclast-like cells (prefusion osteoclasts; pOCs) were purified using the 'disintegrin' echistatin from cocultures of murine osteoblastic cells (MB 1.8 cells) and bone marrow cells. Both IL-1 and M-CSF prolonged the survival and induced the multinucleation of pOCs through their respective receptors. However, actin ring formation (a functional marker of osteoclasts) by multinucleated cells was observed in the pOC cultures treated with IL-1, but not those treated with M-CSF. We previously reported that enriched multinucleated OCLs as well as pOCs placed on bone/dentine slices formed few resorption pits, but their pit-forming activity was greatly increased by the addition of osteoblasts/stromal cells. Here, pit-forming activity of both pOCs and enriched OCLs placed on dentine slices was induced by adding IL-1, even in the absence of osteoblasts/stromal cells. M-CSF failed to induce pit-forming activity in pOC and enriched OCL cultures. These results indicate that IL-1 induces the multinucleation and bone-resorbing activity of osteoclasts even in the absence of osteoblasts/stromal cells.

Original languageEnglish
Pages (from-to)84-93
Number of pages10
JournalExperimental Cell Research
Volume247
Issue number1
DOIs
Publication statusPublished - Feb 25 1999
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Cell Biology

Fingerprint Dive into the research topics of 'Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells'. Together they form a unique fingerprint.

Cite this