Interplay between nuclear shell evolution and shape deformation revealed by the magnetic moment of 75 Cu

Y. Ichikawa, H. Nishibata, Y. Tsunoda, A. Takamine, K. Imamura, T. Fujita, T. Sato, S. Momiyama, Y. Shimizu, D. S. Ahn, K. Asahi, H. Baba, D. L. Balabanski, F. Boulay, J. M. Daugas, T. Egami, N. Fukuda, C. Funayama, T. Furukawa, G. GeorgievA. Gladkov, N. Inabe, Y. Ishibashi, T. Kawaguchi, T. Kawamura, Y. Kobayashi, S. Kojima, A. Kusoglu, I. Mukul, M. Niikura, T. Nishizaka, A. Odahara, Y. Ohtomo, T. Otsuka, D. Ralet, G. S. Simpson, T. Sumikama, H. Suzuki, H. Takeda, L. C. Tao, Y. Togano, D. Tominaga, H. Ueno, H. Yamazaki, X. F. Yang

Research output: Contribution to journalLetter

1 Citation (Scopus)

Abstract

Exotic nuclei are characterized by having a number of neutrons (or protons) in excess relative to stable nuclei. Their shell structure, which represents single-particle motion in a nucleus 1,2 , may vary due to nuclear force and excess neutrons 3–6 , in a phenomenon called shell evolution 7 . This effect could be counterbalanced by collective modes causing deformations of the nuclear surface 8 . Here, we study the interplay between shell evolution and shape deformation by focusing on the magnetic moment of an isomeric state of the neutron-rich nucleus 75 Cu. We measure the magnetic moment using highly spin-controlled rare-isotope beams and achieve large spin alignment via a two-step reaction scheme 9 that incorporates an angular-momentum-selecting nucleon removal. By combining our experiments with numerical simulations of many-fermion correlations, we find that the low-lying states in 75 Cu are, to a large extent, of single-particle nature on top of a correlated 74 Ni core. We elucidate the crucial role of shell evolution even in the presence of the collective mode, and within the same framework we consider whether and how the double magicity of the 78 Ni nucleus is restored, which is also of keen interest from the perspective of nucleosynthesis in explosive stellar processes.

Original languageEnglish
Pages (from-to)321-325
Number of pages5
JournalNature Physics
Volume15
Issue number4
DOIs
Publication statusPublished - Apr 1 2019

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this