TY - JOUR
T1 - Interpretable modeling for short- and medium-term electricity load forecasting
AU - Hirose, Kei
N1 - Publisher Copyright:
Copyright © 2020, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - We consider the problem of short- and medium-term electricity load forecasting by using past loads and daily weather forecast information. Conventionally, many researchers have directly applied regression analysis. However, interpreting the effect of weather on these loads is difficult with the existing methods. In this study, we build a statistical model that resolves this interpretation issue. A varying coefficient model with basis expansion is used to capture the nonlinear structure of the weather effect. This approach results in an interpretable model when the regression coefficients are nonnegative. To estimate the nonnegative regression coefficients, we employ nonnegative least squares. Three real data analyses show the practicality of our proposed statistical modeling. Two of them demonstrate good forecast accuracy and interpretability of our proposed method. In the third example, we investigate the effect of COVID-19 on electricity loads. The interpretation would help make strategies for energy-saving interventions and demand response.
AB - We consider the problem of short- and medium-term electricity load forecasting by using past loads and daily weather forecast information. Conventionally, many researchers have directly applied regression analysis. However, interpreting the effect of weather on these loads is difficult with the existing methods. In this study, we build a statistical model that resolves this interpretation issue. A varying coefficient model with basis expansion is used to capture the nonlinear structure of the weather effect. This approach results in an interpretable model when the regression coefficients are nonnegative. To estimate the nonnegative regression coefficients, we employ nonnegative least squares. Three real data analyses show the practicality of our proposed statistical modeling. Two of them demonstrate good forecast accuracy and interpretability of our proposed method. In the third example, we investigate the effect of COVID-19 on electricity loads. The interpretation would help make strategies for energy-saving interventions and demand response.
UR - http://www.scopus.com/inward/record.url?scp=85095081334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095081334&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85095081334
JO - Quaternary International
JF - Quaternary International
SN - 1040-6182
ER -