TY - JOUR
T1 - Interstitial carbon enhanced corrosion resistance of Fe-33Mn-xC austenitic steels
T2 - Inhibition of anodic dissolution
AU - Chiba, Aya
AU - Koyama, Motomichi
AU - Akiyama, Eiji
AU - Nishimura, Toshiyasu
N1 - Funding Information:
This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 16K18269.
Publisher Copyright:
© The Author(s) 2018.
PY - 2018
Y1 - 2018
N2 - Five Fe-33Mn-xC steels, referred to as 0 C, 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels according to their carbon content in mass%, were prepared to clarify the effect of interstitial carbon on the dissolution behavior of steel. The 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels indicated a fully austenitic structure with no carbide precipitate. The lattice parameters of the 0.6 C, 0.8 C, and 1.1 C steels calculated from the γ(111) and γ(200) diffraction peaks increased by up to around 0.8% over that of the 0.3 C steel, suggesting that the added carbon was present as interstitial carbon in the steels. The 0.6 C, 0.8 C, and 1.1 C steels were passivated during the anodic polarization measurements in 0.1 M Na2SO4 solution at pH 12.0, whereas the 0 C and 0.3 C steels actively dissolved. The anodic polarization measurements in a buffer solution at pH 10.0 demonstrated a lower dissolution current density for the 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels with higher amounts of interstitial carbon. The dissolution current density at 0.3 V vs. Ag/AgCl (3.33 M KCl) of the 1.1 C steel was reduced to approximately 1 × 10-2 A m-2, which was one hundredth that of the 0.3 C steel. The dissolution current density of the steels was not inhibited by the presence of 0.1 M CO3 2- ions, which is an expected dissolution product of interstitial carbon, implying that the interstitial carbon improved the electrochemical property of the steels themselves. The work function of the 1.1 C steel, which showed improved corrosion resistance with interstitial carbon, was 0.12 eV lower than that of the 0 C steel. The peak positions of the Fe 2p3/2 and Mn 2p3/2 spectra of the 1.1 C steel indicated the binding energies were approximately 0.1 eV and 0.2 eV higher than those of the 0 C steel. This can likely be attributed to the partial chemical bonding of interstitial carbon to iron and manganese, respectively.
AB - Five Fe-33Mn-xC steels, referred to as 0 C, 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels according to their carbon content in mass%, were prepared to clarify the effect of interstitial carbon on the dissolution behavior of steel. The 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels indicated a fully austenitic structure with no carbide precipitate. The lattice parameters of the 0.6 C, 0.8 C, and 1.1 C steels calculated from the γ(111) and γ(200) diffraction peaks increased by up to around 0.8% over that of the 0.3 C steel, suggesting that the added carbon was present as interstitial carbon in the steels. The 0.6 C, 0.8 C, and 1.1 C steels were passivated during the anodic polarization measurements in 0.1 M Na2SO4 solution at pH 12.0, whereas the 0 C and 0.3 C steels actively dissolved. The anodic polarization measurements in a buffer solution at pH 10.0 demonstrated a lower dissolution current density for the 0.3 C, 0.6 C, 0.8 C, and 1.1 C steels with higher amounts of interstitial carbon. The dissolution current density at 0.3 V vs. Ag/AgCl (3.33 M KCl) of the 1.1 C steel was reduced to approximately 1 × 10-2 A m-2, which was one hundredth that of the 0.3 C steel. The dissolution current density of the steels was not inhibited by the presence of 0.1 M CO3 2- ions, which is an expected dissolution product of interstitial carbon, implying that the interstitial carbon improved the electrochemical property of the steels themselves. The work function of the 1.1 C steel, which showed improved corrosion resistance with interstitial carbon, was 0.12 eV lower than that of the 0 C steel. The peak positions of the Fe 2p3/2 and Mn 2p3/2 spectra of the 1.1 C steel indicated the binding energies were approximately 0.1 eV and 0.2 eV higher than those of the 0 C steel. This can likely be attributed to the partial chemical bonding of interstitial carbon to iron and manganese, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85048450333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048450333&partnerID=8YFLogxK
U2 - 10.1149/2.0661802jes
DO - 10.1149/2.0661802jes
M3 - Article
AN - SCOPUS:85048450333
VL - 165
SP - C19-C26
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
SN - 0013-4651
IS - 2
ER -