Abstract
Myoglobin reconstituted with a cobalt tetradehydrocorrin derivative, rMb(Co(TDHC)), was investigated as a hybrid model to replicate the reaction catalyzed by methionine synthase. In the heme pocket, CoI(TDHC) is found to react with methyl iodide to form the methylated cobalt complex, CH3-CoIII(TDHC), although it is known that a similar nucleophilic reaction of a cobalt(i) tetradehydrocorrin complex does not proceed effectively in organic solvents. Furthermore, we observed a residue- and regio-selective transmethylation from the CH3-CoIII(TDHC) species to the Nε2 atom of the His64 imidazole ring in myoglobin at 25 °C over a period of 48 h. These findings indicate that the protein matrix promotes the model reaction of methionine synthase via the methylated cobalt complex. A theoretical calculation provides support for a plausible reaction mechanism wherein the axial histidine ligation stabilizes the methylated cobalt complex and subsequent histidine-flipping induces the transmethylation via heterolytic cleavage of the Co-CH3 bond in the hybrid model.
Original language | English |
---|---|
Pages (from-to) | 3277-3284 |
Number of pages | 8 |
Journal | Dalton Transactions |
Volume | 45 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2016 |
All Science Journal Classification (ASJC) codes
- Inorganic Chemistry